

Using the Babraham

Compute Cluster

Version 1.4.0

 Using the Babraham Compute Cluster

2

Licence
This manual is © 2013-14, Simon Andrews.

This manual is distributed under the creative commons Attribution-Non-Commercial-Share Alike 2.0

licence. This means that you are free:

 to copy, distribute, display, and perform the work

 to make derivative works

Under the following conditions:

 Attribution. You must give the original author credit.

 Non-Commercial. You may not use this work for commercial purposes.

 Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting

work only under a licence identical to this one.

Please note that:

 For any reuse or distribution, you must make clear to others the licence terms of this work.

 Any of these conditions can be waived if you get permission from the copyright holder.

 Nothing in this license impairs or restricts the author's moral rights.

Full details of this licence can be found at

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/legalcode

 Using the Babraham Compute Cluster

3

What is the cluster
The Babraham compute cluster is a shared computational resource which is now available to anyone

at the institute doing research which requires a powerful computing platform.

The system is a 384 node linux cluster which can be accessed via a command line interface. It has a

dedicated 160TB storage array attached directly to it and can also access a separate 320TB storage

array containing various public datasets. It has a wide variety of common bioinformatics packages

installed and should provide a powerful platform for all manner of large scale computational analyses.

In structure the cluster consists of a set of physical servers. The servers are split into compute nodes

and head nodes. When using the cluster you only normally directly interact with the head node and it

can communicate with the processing nodes to actually carry out the work you request.

User 1’s Machine

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Intranet

Storage Array

Head Node
Private Network

User 2’s Machine

 Using the Babraham Compute Cluster

4

Using the cluster

Registering to use the cluster

Before you can use the cluster you need to be registered as a user on the system. To do this please

contact Simon Andrews in bioinformatics and arrange a time to briefly discuss what work you want to

do on the cluster and set up your account.

Software required to use the cluster

The cluster is accessed via a linux command line interface, but it can also support the running of

graphical programs on the cluster which are displayed on your local desktop. To access the cluster

you will therefore require a terminal program to make the initial connection and provide a command

line interface. If you want to run graphical programs you will need an X server program which will

allow remote windows to be displayed on your machine.

Windows
Windows users will need to install two pieces of software to access the cluster. To allow a command

line connection they should use PuTTY, which can be found in the Molbio Software Repository along

with all of the other windows bioinformatics packages. For graphical displays you will need a package

called Exceed which you’ll need to get from computing. This is a commercial package for which we

have a site license so there is no individual charge to have this installed on your machine.

OSX
OSX users can use the X11.app (now called XQuartz.app in the latest OSX release) as their X server

which should be installed in their Applications folder in the Utilities subfolder. The X11 app also

provides an xterm application which can be used to connect to the cluster.

Linux
Linux uses X11 to display all of its graphics so no additional X server is required. Linux users can use

whichever terminal application comes with their chosen desktop environment (Terminal, Konsole,

xterm etc) to connect to the server.

 Using the Babraham Compute Cluster

5

Connecting to the cluster

Although the cluster has many processing nodes within it all access to the cluster happens through a

single node called the ‘head node’. This is the machine you connect to, and from the head node you

can submit jobs which are automatically passed out to appropriate compute nodes to be run.

The address of the head node is rocks1.babraham.ac.uk and a connection to this node must be

made via SSH. Details of how to do this are given below.

Windows
Before connecting to the head node ensure that the Exceed program

is running (Start > All Programs > OpenText Exceed > Exceed). You

will see a splash screen appear and then disappear and then you

should just see the Exceed icon in your toolbar, there will be nothing

else shown on the main part of your screen.

Once Exceed is running you can use PuTTY to connect to the cluster. When you first run PuTTY you

will see the main configuration screen.

On the front screen you need to enter the address of the head node in the “Host” box, which is

rocks1.babraham.ac.uk. You also need to move to the Connection > SSH > X11 option, and tick the

box which says “Enable X11 forwarding”.

 Using the Babraham Compute Cluster

6

You can now save these settings by putting a name in the “Saved Sessions” box on the main screen

and then pressing Save. In future you can then connect to the cluster by simply double clicking on the

saved session in the saved session list.

When you start a session you will see a PuTTY screen appear from where you can enter your login

details. The details you use will be your normal windows username and password.

OSX
To connect to the cluster first start the X11.app from your applications folder. When you start this you

should see an xterm terminal window appear. If it doesn’t appear then you can start one manually by

going to X11 > Applications > Terminal.

Once the terminal appears you can connect to the cluster by running:

ssh -Y rocks1.babraham.ac.uk

[On older versions of X11.app you may need to use -X instead of -Y]

…and using your password to connect.

 Using the Babraham Compute Cluster

7

Linux
Linux users can connect to the cluster from whichever terminal application they normally use. The

command line would be the same as for OSX.

ssh -Y rocks1.babraham.ac.uk

If the username you’re using on your local linux session isn’t the same as your windows username

then you can specify a specific user to connect as using

ssh -Y username@rocks1.babraham.ac.uk

 Using the Babraham Compute Cluster

8

File Management

Where to save data
The cluster has an attached storage system onto which you can save your data. There are three

main areas into which you can put data and which are appropriate for different kinds of data. All of

the areas are situated under the /bi directory and you shouldn’t try to save data outside of these

locations.

Every user has a home directory under /bi/home/[username] and this is where you’ll start each

session on the cluster. The home directory is suitable for relatively small files which are only relevant

to you. Examples might be scripts that you’re working on or configuration or results files.

Most of the important data should go into your group share which is situated under /bi/group. If

you’re not sure which group you’re in you can just run ‘groups’ on the command line which will tell

you. How files inside an individual group share are organised is left up to the group so you’ll need to

discuss with the other members of your group how you are going to manage this.

All data saved in either your home directory or the group share will be backed up to a second storage

cluster at regular intervals. The backups are filesystem snapshots so although they provide some

resilience they do not provide long term backups. If you accidentally delete something from one of

these areas you need to get it restored as quickly as possible as the snapshots will eventually roll

over and the data will be permanently lost.

For data which doesn’t need to be backed up there is a separate storage area which you can use and

you should try to use this area where possible so that we don’t end up wasting space in the backups

for data which can easily be recreated. This scratch area can be found under /bi/scratch and its

permissions are open so that anyone can write data into this area.

For all of the storage areas please try to manage the data you create. We have a relatively large

storage area, but with the size of datasets we are now creating it will start to fill up surprisingly quickly.

At the moment we do not put limits on the amount of space which can be taken up by individual users

or groups, but this relies on people managing their storage usage and cleaning up data which is no

longer required.

Transferring data to and from the cluster
The main data stores on the cluster are only visible from nodes within the cluster, so if you want to

move data on or off the cluster you will need to do this manually.

Data transfers to and from the cluster can be done using scp or sftp using the same credentials you

use to log into the cluster.

Windows
On windows you will need to use an scp client to do your data transfers. The one we would

recommend is WinSCP which can be found in the Molbio Software Repository. This is a simple

transfer program which integrates with Windows Explorer to allow you to drag and drop files between

the cluster and your desktop.

When you launch the program you see a setup window into which you can put the details of the

server and your account:

 Using the Babraham Compute Cluster

9

You can also go to Preferences and change the default interface to be the Explorer interface so it

looks like another windows explorer window.

You can save the settings you’ve entered by pressing the save button, and the saved session will be

shown to you the next time you start the program.

Once you’ve logged in you will see a file window containing your data on the cluster. You can use this

to navigate to the directory you want to use for your transfer and then dragging data into or out of this

window into a normal windows explorer window to actually perform the transfer.

OSX
On OSX you can either transfer data using a command line interface or a graphical scp client. On the

command line you can use the scp program to copy data from a remote host. The syntax for scp is

virtually the same as for a normal cp except that you can prefix either side of the transfer with a host

name to specify the machine you want to pull data from.

 Using the Babraham Compute Cluster

10

For example, if you wanted to copy a file called data.txt from your group share to your local data

volume you could use a command such as:

scp rocks1:/bi/group/mygroup/data.txt /Volumes/Data/

To send a file called sendme.txt from the current directory to a folder called Upload in your cluster

home directory you could use:

scp sendme.txt rocks1:/bi/home/myusername/Upload/

If you want to use a graphical client then the cyberduck client works well for moving data by scp. You

can connect to the server by selecting “Open Connection” and using SFTP as the transfer method

and your normal username and password as authentication

Once you have logged in you will see a graphical view of your files on the server and you can drag

and drop data in and out of this window.

 Using the Babraham Compute Cluster

11

Linux
Linux users can use a command line copy as described in the OSX section. There is also normally an

SFTP client built into the file manager for whichever desktop environment you’re using. Additionally

there are generic file transfer programs such as filezilla which can run under linux and which provide a

graphical interface to SFTP data transfers.

 Using the Babraham Compute Cluster

12

Software packages

Once you are logged into the cluster you will need to set up your environment to add in whichever

software packages you want to be able to use. There are very few packages available within the

default shell you get having just logged in but it’s easy to add in what you need.

Most of the software on the cluster is controlled by a system called environment modules. This allows

you to install a lot of different packages on the cluster, including multiple versions of the same

package, or even conflicting packages and then provides a mechanism for each user to select which

of these packages they want to use in their session.

All of the options relating to environment modules are accessed through a program called ‘module’.

To see which packages are available to you on the cluster you can run the command

module avail

This will produce a list of the packages and versions you can choose from.

$ module avail

-------------------------- /usr/share/Modules/modulefiles -----------------

dot module-info null use.own

module-cvs modules rocks-openmpi

--------------------------------- /etc/modulefiles ------------------------

openmpi-x86_64

------------------------------- /bi/apps/modulefiles ----------------------

R/2.15.2 cufflinks/2.0.2 python/2.7.3

SBMLsimulator/1.0-rc2 cutadapt/1.1 python3/3.3.0

bedtools/2.17.0 cutadapt/1.2.1 queue/2.3.9

bioperl/1.2.3 ensemblapi/70 samtools/0.1.18

bismark/0.7.7 fastq_screen/0.4 seqmonk/0.23.1

bowtie/0.12.9 fastqc/0.10.1 seqmonk/0.24.0.devel

bowtie2/2.0.5 gatk/2.3.9 sratoolkit/2.1.9

bowtie2/2.0.6 hicup/0.3.0 star/2.2.0

bwa/0.6.2 java/1.6.0_37 tabix/0.2.6

cellDesigner/4.3 java/1.7.0_09 tophat/2.0.7

cmake/2.8.10.2 macs/1.4.2 trim_galore/0.2.5

copasi/4.8-build-35-static meme/3.5.7 vcftools/0.1.10

copasi/4.9.45 ngs/0.1 weeder/1.4.2

Most of the interesting packages will be in the last section of this list. You can see that each package

has both a name and an associated version number. Some packages have multiple versions installed

whereas others will have only one.

To use a package you use the ‘module load’ command. You can choose to specify a specific module

to load (eg bowtie2/2.0.5) or you can just use the module name (bowtie2) in which case you’ll get the

latest version of that module.

 Using the Babraham Compute Cluster

13

Loading a module will immediately make that software package available in your current session as

demonstrated below.

$ bismark --version

-bash: bismark: command not found

$ module load bismark

$ bismark --version

 Bismark - Bisulfite Mapper and Methylation Caller.

Bismark v0.7.7 Copyright 2010-12 Felix Krueger, Babraham Bioinformatics

 www.bioinformatics.babraham.ac.uk/projects/

If you’re not sure what modules you’ve already loaded then you can see this using ‘module list’.

Modules know about dependencies on other modules, so loading one module may also load several

others to allow it to work.

$ module list

No Modulefiles Currently Loaded.

$ module load trim_galore

$ module list

Currently Loaded Modulefiles:

 1) java/1.7.0_09 3) cutadapt/1.2.1

 2) fastqc/0.10.1 4) trim_galore/0.2.5

If you need a package which isn’t available either by default or through the environment modules then

please come to speak to someone in the bioinformatics group who can help you to work out the best

way to add in the software you need.

You can also configure your account to automatically load some modules whenever you log in. To do

this you initially need to run the command shown below. This only ever needs to be run once on your

account.

echo "module add null" >> ~/.bashrc

Once you’ve done that you can use the commands below:

module initlist – shows you which modules you’re currently loading by default

module initadd [module name] – adds a new module to the initially loaded list

module initrm [module name] – removes a module from your initially loaded list

 Using the Babraham Compute Cluster

14

Running jobs

Although you connect to the cluster through the head node, this machine isn’t designed to do any real

processing work. You can run small jobs such as copying and uncompressing data, on the head

node and you can also use this to run editors for writing code and setting up jobs, but any significant

computational work should not be run there.

The cluster runs a system called gridengine which is a queuing system which can take in large

numbers of jobs and distribute them from the head node to one of the 128 compute nodes. They can

then run in parallel and the results are returned back to the head node, from where you can collect

them. The queue can manage submissions from multiple users and it can take in far more requests

than can simultaneously be processed by the cluster, and will assign them to the available compute

nodes in the most efficient manner possible. We would therefore strongly urge you to use the queue

for your large computational jobs.

Requesting resources
One of the key aspects to the way that gridengine works is that it has to match the resources required

for each submitted job to those available on the cluster. In this way it can ensure that it makes

optimal use of the resources it has and processes as many jobs as possible at the same time. When

you submit a job to the cluster therefore it is important that you tell the cluster, as best you can, how

much computational resource your job is going to require. There are two types of resource which are

important:

1. The amount of memory (RAM) your job will need

2. The number of CPU cores your job will use

If you don’t specify these resources then a small default will be used instead (1 core and 1GB RAM),

so if your job will use a significant amount of memory or more than 1 CPU core then you must specify

this when you launch it.

The options for specifying resources are the same for all of the different submission types listed below

and should be appended to any of the batch submission commands (interactive sessions are not

limited by resources).

To specify that your process needs to use a large amount of memory (more than 1GB) you should

use the option -l h_vmem=2G and replace the 2G with whatever amount of memory you require.

You should note that if your job exceeds the amount of memory you have requested then it will be

killed, so make sure you ask for enough. If you don’t know how much to request then ask someone in

bioinformatics for advice.

If you are running a multi-threaded application which requires more than one CPU core to complete

then you should tell the scheduler how many cores it is going to use. The options to do this are -pe

cores 8 which would specify 8 cores. Simply change the last number to the number of cores you

actually require. The options below would be suitable for a job which requires 8 cores and 2GB RAM.

-l h_vem=2G -pe cores 8

Submitting to the queue
There are three different ways to interact with the gridengine queue and they’re appropriate for

different types of job.

 Using the Babraham Compute Cluster

15

1) Interactive sessions

An interactive session simply provides you with a login shell on a free compute node. You

don’t need to specify what it is that you’re going to run and you can run as many commands

within the compute session as you need to. The session will continue until you manually log

out of the compute node and come back to the head node.

Interactive sessions are only normally used where you want to run a single intensive

application which requires user interaction. An example would be running a graphical

application such as SeqMonk, where you don’t want the processing to be done on the head

node so you’d start an interactive session on a compute node and launch the program from

there.

You shouldn’t use interactive sessions to run multiple large compute jobs, it’s much better to

use the other submission options for these. Firstly this is because jobs started within an

interactive session can’t be monitored by the main gridengine queue so may end up clashing

with other running jobs. Also you can only start jobs on the physical server you are assigned

in an interactive session, whereas the main queue can distribute your jobs over all the

physical servers in the cluster where they will complete much more quickly.

To start an interactive session simply type ‘qlogin’ on the head node.

$ qlogin

Your job 1062 ("QLOGIN") has been submitted

waiting for interactive job to be scheduled ...

Your interactive job 1062 has been successfully scheduled.

Establishing /bi/apps/ssh_wrapper/qlogin_wrapper session to host

compute-0-3.local ...

Last login: Fri Feb 1 09:05:53 2013 from rocks1.local

Rocks Compute Node

Rocks 6.0 (Mamba)

Profile built 14:16 21-Jan-2013

Kickstarted 14:23 21-Jan-2013

[andrewss@compute-0-3 ~]$

2) Interactive jobs

The second type of submission is an interactive job. Instead of starting a session on a remote

node this option sends a single command to a remote node where it is processed. It looks

from the user side as if you are running the job on the head node, but behind the scenes the

processing is actually happening on a processing node.

The command to launch this type of job is qrsh, which you can follow by the command you

want to run. As a simple example you can run “qrsh hostname” to show that the command

is really being passed to a remote node for processing. In the example below 10 qrsh calls

to ‘hostname’ are made and you can see the job being passed to different servers in the

cluster.

$ for i in {1..10}; do qrsh hostname; done

compute-0-0.local

 Using the Babraham Compute Cluster

16

compute-0-1.local

compute-0-2.local

compute-0-0.local

compute-0-1.local

compute-0-2.local

compute-0-0.local

compute-0-1.local

compute-0-2.local

compute-0-0.local

There are a couple of extra options you probably want to use when running qrsh. By default

it will start up a new login session on a compute node to run your command which will change

the modules you have loaded and will put you in a different directory. This means that

commands which work on the head node won’t work on the compute node if they rely on any

changes in the local environment, such as loading modules.

$ module load bowtie

$ bowtie --version

bowtie version 0.12.9

64-bit

Built on igm1

Sun Dec 16 14:36:32 EST 2012

Compiler: gcc version 4.1.2 20080704 (Red Hat 4.1.2-50)

Options: -O3 -m64 -Wl,--hash-style=both

Sizeof {int, long, long long, void*, size_t, off_t}: {4, 8, 8, 8, 8,

8}

$ qrsh bowtie --version

bash: bowtie: command not found

In order to preserve the local environment when running the command you need to add the

‘-V’ option to the qrsh command.

$ qrsh -V bowtie --version

bash: module: line 1: syntax error: unexpected end of file

bash: error importing function definition for `module'

bowtie version 0.12.9

64-bit

Built on igm1

Sun Dec 16 14:36:32 EST 2012

Compiler: gcc version 4.1.2 20080704 (Red Hat 4.1.2-50)

Options: -O3 -m64 -Wl,--hash-style=both

Sizeof {int, long, long long, void*, size_t, off_t}: {4, 8, 8, 8, 8,

8}

You will see that the command now works, but produces a couple of error messages at the

top. These are the result of a bug in gridengine, which is annoying but doesn’t affect the

function of the commands so you can safely ignore these.

The other option you will commonly pass to qrsh is the ‘-cwd’ option which moves you to

the same directory on the compute node as you were in when you ran the qrsh command.

 Using the Babraham Compute Cluster

17

You will need to add this if you are reading or writing any files which are accessed via a

relative path.

$ pwd

/bi/group/bioinf

$ qrsh pwd

/bi/home/andrewss

$ qrsh -cwd pwd

/bi/group/bioinf

You can run multiple qrsh jobs by putting them into the background but we have found that if

you do this on too large a scale then the jobs won’t automatically complete, but will stall at the

end until you put them back into the foreground at which point they terminate cleanly. You

will also need to keep the login session active whilst any qrsh jobs are running since any

output is returned into the shell from which the jobs were launched.

3) Non-interactive jobs

The preferred way to submit any large batch jobs is through the use of the ‘qsub’ command.

This command is largely similar to the qrsh command but with a couple of important

differences. The main difference between the two in terms of their functionality is that qrsh is

supposed to be used for jobs where your session will stay active for the duration of the job,

whereas qsub can be used for jobs which can be submitted and then left to run with no

further user interaction.

The other major difference between qrsh and qsub is that whereas qrsh allows you to

simply specify a command to run, qsub expects you to produce a script which contains the

commands you want to run in the job. The output of qsub is also presented as a set of files,

rather than being sent back to the terminal from which the job was launched.

A simple script submitted via qsub might look like this:

#!/bin/bash

bowtie --version

You would submit this file (called bowtie_version.sh) to the queue as follows:

$ qsub -V -cwd bowtie_version.sh

Your job 1094 ("bowtie_version.sh") has been submitted

$ ls -ltr

-rw-r--r-- 1 andrewss bioinf 28 Feb 21 11:08 bowtie_version.sh

-rw-r--r-- 1 andrewss bioinf 0 Feb 21 11:09 bowtie_version.sh.e1094

-rw-r--r-- 1 andrewss bioinf 84 Feb 21 11:09 bowtie_version.sh.o1094

Since we added the ‘-cwd’ option the output comes back to the same directory as we started

in, and you get two files produced, one for the standard output from the job and the other for

the standard error. The names will be the same as the script you submitted and will use

e[job_id] and o[job_id] as suffixes by default. You can change the names of the output files

 Using the Babraham Compute Cluster

18

by using the -o and -e options to qsub. If you want to merge your output together into a

single file you can also add -j y.

$ qsub -cwd -V -o out.txt -e err.txt bowtie_version.sh

Your job 1095 ("bowtie_version.sh") has been submitted

$ ls -ltr

-rw-r--r-- 1 andrewss bioinf 28 Feb 21 11:08 bowtie_version.sh

-rw-r--r-- 1 andrewss bioinf 0 Feb 21 11:13 err.txt

-rw-r--r-- 1 andrewss bioinf 84 Feb 21 11:13 out.txt

$ qsub -cwd -V -o all.txt -j y bowtie_version.sh

Your job 1096 ("bowtie_version.sh") has been submitted

$ls -ltr

-rw-r--r-- 1 andrewss bioinf 28 Feb 21 11:08 bowtie_version.sh

-rw-r--r-- 1 andrewss bioinf 84 Feb 21 11:14 all.txt

If you don’t want to have to write your commands into a file then you can issue a command

directly by telling qsub that your job is a ‘binary’ job as opposed to a script, using the option

-b y.

$ qsub -cwd -b y hostname

Your job 233604 ("hostname") has been submitted

$ls -ltr

total 27

-rw-r--r-- 1 andrewss bioinf 0 Nov 18 10:18 hostname.e233604

-rw-r--r-- 1 andrewss bioinf 18 Nov 18 10:18 hostname.o233604

$ cat hostname.o233604

compute-0-1.local

With an explicit output filename then this can be much cleaner

$ for i in {1..10}; do qsub -cwd -o hostname.out -j y -b y hostname; done

Your job 233606 ("hostname") has been submitted

Your job 233607 ("hostname") has been submitted

Your job 233608 ("hostname") has been submitted

Your job 233609 ("hostname") has been submitted

Your job 233610 ("hostname") has been submitted

Your job 233611 ("hostname") has been submitted

Your job 233612 ("hostname") has been submitted

Your job 233613 ("hostname") has been submitted

Your job 233614 ("hostname") has been submitted

Your job 233615 ("hostname") has been submitted

$ ls

hostname.out

$ cat hostname.out

compute-0-1.local

compute-0-1.local

compute-0-2.local

compute-0-1.local

compute-0-1.local

compute-0-1.local

 Using the Babraham Compute Cluster

19

compute-0-1.local

compute-0-4.local

compute-0-1.local

compute-0-1.local

Rather than have all of the jobs called ‘hostname’ you can pass the –N option to give them a

more individual name.

$ for i in {1..10}; do qsub -cwd -o hostname.out -N hostname_${i} -j

y -b y hostname; done

Your job 233627 ("hostname_1") has been submitted

Your job 233628 ("hostname_2") has been submitted

Your job 233629 ("hostname_3") has been submitted

Your job 233630 ("hostname_4") has been submitted

Your job 233631 ("hostname_5") has been submitted

Your job 233632 ("hostname_6") has been submitted

Your job 233633 ("hostname_7") has been submitted

Your job 233634 ("hostname_8") has been submitted

Your job 233635 ("hostname_9") has been submitted

Your job 233636 ("hostname_10") has been submitted

Changing Default Options
If you have a set of options which you always add to your qsub or qrsh commands then rather

than having to type them out each time you can have them added to every future command

by default.

To do this you need to create a file called .sge_request (note the leading dot) and put it in the

top level of your home directory. Within this file you can put one option per line which will all

then be added to your commands by default after that.

For example if your .sge_request file looks like this:

$ cat .sge_request

-cwd

-V

-b y

-j y

You can simply run:

$ qsub hostname

Your job 233665 ("hostname") has been submitted

$ ls

hostname.o233665

As the -cwd -V -b y -j y will all have been added from the file. If you need to remove

these options then you can add -clear to the start of your command to remove the default

options.

 Using the Babraham Compute Cluster

20

Monitoring jobs in the queue
Once you have submitted some jobs to the queue there will be no indication of progress until the job

is returned to you. However you can monitor the current state of the queue to see what jobs you have

running and where they are.

For simple monitoring there is a command line tool called qstat which will show you what is currently

in the queue. If you run this on its own it will show you a summary of all of the jobs you currently have

running.

$ qstat

job-ID prior name user state submit/start at queue slots ja-task-ID

--

 1135 0.00000 test_job_1 andrewss qw 02/21/2013 11:27:59 1

 1136 0.00000 test_job_2 andrewss qw 02/21/2013 11:27:59 1

 1137 0.00000 test_job_3 andrewss qw 02/21/2013 11:27:59 1

 1138 0.00000 test_job_4 andrewss qw 02/21/2013 11:27:59 1

 1139 0.00000 test_job_5 andrewss qw 02/21/2013 11:27:59 1

 1140 0.00000 test_job_6 andrewss qw 02/21/2013 11:27:59 1

 1141 0.00000 test_job_7 andrewss qw 02/21/2013 11:27:59 1

 1142 0.00000 test_job_8 andrewss qw 02/21/2013 11:27:59 1

 1143 0.00000 test_job_9 andrewss qw 02/21/2013 11:27:59 1

 1144 0.00000 test_job_1 andrewss qw 02/21/2013 11:27:59 1

If you add -f to the command it will break the jobs down based on the physical servers on which they

are being run and will show you some summary information on how heavily loaded each of those

servers is.

$ qstat -f

queuename qtype resv/used/tot. load_avg arch states

all.q@compute-0-0.local BIP 0/2/64 1.53 lx26-amd64

 1137 0.55500 test_job_3 andrewss r 02/21/2013 11:28:09 1

 1141 0.55500 test_job_7 andrewss r 02/21/2013 11:28:09 1

all.q@compute-0-1.local BIP 0/2/64 1.57 lx26-amd64

 1138 0.55500 test_job_4 andrewss r 02/21/2013 11:28:09 1

 1142 0.55500 test_job_8 andrewss r 02/21/2013 11:28:09 1

all.q@compute-0-2.local BIP 0/4/64 1.50 lx26-amd64

 1135 0.55500 test_job_1 andrewss r 02/21/2013 11:28:09 1

 1139 0.55500 test_job_5 andrewss r 02/21/2013 11:28:09 1

 1143 0.55500 test_job_9 andrewss r 02/21/2013 11:28:09 1

all.q@compute-0-3.local BIP 0/3/64 1.51 lx26-amd64

 1136 0.55500 test_job_2 andrewss r 02/21/2013 11:28:09 1

 1140 0.55500 test_job_6 andrewss r 02/21/2013 11:28:09 1

 1144 0.55500 test_job_1 andrewss r 02/21/2013 11:28:09 1

 Using the Babraham Compute Cluster

21

If you want to see jobs for all users you can use qstat -u "*"

$ qstat -u "*"

job-ID prior name user state submit/start at queue slots ja-task-ID

 1161 0.55500 test_job_1 andrewss r 02/21/2013 11:31:39 all.q@compute-0-3.local 1

 1162 0.55500 test_job_2 andrewss r 02/21/2013 11:31:39 all.q@compute-0-1.local 1

 1163 0.55500 test_job_3 andrewss r 02/21/2013 11:31:39 all.q@compute-0-0.local 1

 1164 0.55500 test_job_4 andrewss r 02/21/2013 11:31:39 all.q@compute-0-2.local 1

 1165 0.55500 test_job_5 andrewss r 02/21/2013 11:31:39 all.q@compute-0-3.local 1

 1166 0.55500 test_job_6 andrewss r 02/21/2013 11:31:39 all.q@compute-0-1.local 1

 1167 0.55500 test_job_7 andrewss r 02/21/2013 11:31:39 all.q@compute-0-0.local 1

 1168 0.55500 test_job_8 andrewss r 02/21/2013 11:31:39 all.q@compute-0-2.local 1

 1169 0.55500 test_job_9 andrewss r 02/21/2013 11:31:39 all.q@compute-0-3.local 1

 1170 0.55500 test_job_1 andrewss r 02/21/2013 11:31:39 all.q@compute-0-1.local 1

 1171 0.55500 another_te bigginsl r 02/21/2013 11:34:09 all.q@compute-0-1.local 1

 1172 0.55500 another_te bigginsl r 02/21/2013 11:34:09 all.q@compute-0-2.local 1

 1173 0.55500 another_te bigginsl r 02/21/2013 11:34:09 all.q@compute-0-0.local 1

 1174 0.55500 another_te bigginsl r 02/21/2013 11:34:09 all.q@compute-0-1.local 1

 1175 0.55500 another_te bigginsl r 02/21/2013 11:34:09 all.q@compute-0-2.local 1

 1176 0.55500 another_te bigginsl r 02/21/2013 11:34:09 all.q@compute-0-0.local 1

 1177 0.55500 another_te bigginsl r 02/21/2013 11:34:09 all.q@compute-0-3.local 1

 1178 0.55500 another_te bigginsl r 02/21/2013 11:34:09 all.q@compute-0-1.local 1

 1179 0.55500 another_te bigginsl r 02/21/2013 11:34:09 all.q@compute-0-2.local 1

 1180 0.55500 another_te bigginsl r 02/21/2013 11:34:09 all.q@compute-0-0.local 1

For a more graphical view of the queue you can use the qmon program. This will initially open up a

small toolbar.

The top left two buttons allow you to view either the list of active jobs or the load state of the machines

in the cluster.

 Using the Babraham Compute Cluster

22

Removing jobs from the queue
If you decide that having started a job you no longer want it to run then you can delete it from the

queue at any time. You can only delete your own jobs though.

To remove a job first use qstat to find the job id for the job you want to remove. You can then use

qdel to remove the job. You can specify multiple ids separated by spaces.

$ qstat

 Using the Babraham Compute Cluster

23

job-ID prior name user state submit/start at queue slots ja-task-ID

 1183 0.00000 test_job_1 andrewss qw 02/21/2013 11:48:34 1

 1184 0.00000 test_job_2 andrewss qw 02/21/2013 11:48:34 1

 1185 0.00000 test_job_3 andrewss qw 02/21/2013 11:48:34 1

 1186 0.00000 test_job_4 andrewss qw 02/21/2013 11:48:34 1

 1187 0.00000 test_job_5 andrewss qw 02/21/2013 11:48:34 1

 1188 0.00000 test_job_6 andrewss qw 02/21/2013 11:48:34 1

 1189 0.00000 test_job_7 andrewss qw 02/21/2013 11:48:34 1

 1190 0.00000 test_job_8 andrewss qw 02/21/2013 11:48:34 1

 1191 0.00000 test_job_9 andrewss qw 02/21/2013 11:48:34 1

 1192 0.00000 test_job_1 andrewss qw 02/21/2013 11:48:34 1

$ qdel 1183 1184 1185

andrewss has registered the job 1183 for deletion

andrewss has registered the job 1184 for deletion

andrewss has registered the job 1185 for deletion

$ qstat

job-ID prior name user state submit/start at queue slots ja-task-ID

--

1186 0.555 test_job_4 andrewss r 02/21/2013 11:48:39 all.q@compute-0-1.local 1

1187 0.555 test_job_5 andrewss r 02/21/2013 11:48:39 all.q@compute-0-2.local 1

1188 0.555 test_job_6 andrewss r 02/21/2013 11:48:39 all.q@compute-0-3.local 1

1189 0.555 test_job_7 andrewss r 02/21/2013 11:48:39 all.q@compute-0-1.local 1

1190 0.555 test_job_8 andrewss r 02/21/2013 11:48:39 all.q@compute-0-0.local 1

1191 0.555 test_job_9 andrewss r 02/21/2013 11:48:39 all.q@compute-0-2.local 1

1192 0.555 test_job_1 andrewss r 02/21/2013 11:48:39 all.q@compute-0-3.local 1

 Using the Babraham Compute Cluster

24

Clusterflow Pipelines

To make life easier for people running batches of jobs using common bioinformatics tools we have

written a pipelining system called clusterflow (or cf for short) which makes the process of defining and

submitting qsub jobs much easier. Clusterflow provides a series of pipelines which allow you to

easily run sets of analyses, potentially involving several different programs, with a single simple

command.

Accessing Clusterflow
Clusterflow itself is just another software package installed as an environment module. To import

clusterflow into your current session you simply need to do:

module load cf

This provides access to the cf program which is what you use for all interaction with the clusterflow

system.

Configuring clusterflow
Clusterflow hs the ability to send you emails to inform you about the progress of jobs you are running.

Before using clusterflow for the first time you should set up your notification configuration. To do this

you simply run the command below and follow the prompts.

cf --make_config

Modules and Pipelines
The two main core concepts in clusterflow are modules and piplines. A module is simply a wrapper

for a single program (FastQC, Bismark, Tophat etc). A pipeline is a structured set of modules

arranged in a particular order (eg run FastQC, then trim galore, then tophat). To see the modules

available in clusterflow you can run:

$ cf --list_modules

================================

Cluster Flow - available modules

================================

Available modules:

 Directory ./

 Directory /bi/home/andrewss/clusterflow/modules/ (not found)

 Directory /bi/apps/clusterflow/0.1/modules/

 - bismark_align

 - bismark_deduplicate

 - bismark_messy

 - bismark_methXtract

 - bismark_tidy

 - bowtie

 - bowtie1

 - bowtie2

 - cf_download

 - cf_run_finished

 - cf_runs_all_finished

 - fastq_screen

 - fastqc

 - hicup

 Using the Babraham Compute Cluster

25

 - sra_abidump

 - sra_fqdump

 - tophat

 - trim_galore

 To see the pipelines you run:

$ cf --list_pipelines

================================

Cluster Flow - available pipelines

================================

Installed pipelines:

 Directory ./

 -

 Directory /bi/home/andrewss/clusterflow/pipelines/

 - pbat

 - trim_bowtie

 - trim_bowtie2

 - trim_bowtie_miRNA

 Directory /bi/apps/clusterflow/0.1/pipelines/

 - bismark

 - bismark_pbat

 - bismark_singlecell

 - fastq_bismark

 - fastq_bowtie

 - fastq_hicup

 - fastq_pbat

 - fastq_tophat

 - sra_bismark

 - sra_bismark_RRBS

 - sra_bowtie

 - sra_bowtie1

 - sra_bowtie2

 - sra_bowtie_miRNA

 - sra_hicup

 - sra_pbat

 - sra_tophat

 - sra_trim

 - trim_bowtie_miRNA

 - trim_tophat

Running clusterflow commands
To run a clusterflow pipeline you simply issue a command with the following structure

cf [name of module or pipeline] [files you want to process]

Clusterflow will then create and submit a series of qsub jobs so that all of the programs in the pipeline

are run for all of the files you want to process.

There are two other options you may need to add to your cf command. If your pipeline needs to map

data to a reference genome then it will need to know which genome you want to use. There are a set

of pre-configured genomes already available and to access these you run:

 Using the Babraham Compute Cluster

26

$ cf --list_genomes

Once you have found the name of the genome you want to use you can just append that to the

clusterflow command:

cf --genome GRCm38 [name of module or pipeline] [files you want to process]

The other option you can set is whether a set of sequence files you’re submitting are single or paired

end. The program will try to automatically identify paired end files based on their names, but if you

see that the automatic detection has incorrectly identified your paired end data as single end, or if you

have files with paired end names that you want to process individually then you can force single or

paired end mode by adding --single or --paired to the cf command. If you force the use of paired end

mode then the program will assume that pairs of files will be placed next to each other in the list of

files you submit.

cf --paired [name of module or pipeline] [paired list of files]

Monitoring clusterflow jobs
Clusterflow jobs will appear in the normal gridengine queue alongside other qsub jobs so you can just

use qstat to see them. You will find that large pipelines will submit a large number of jobs such that

the output of qstat can become hard to read. To make things easier to understand clusterflow

therefore has its own monitoring program which shows you the pipelines you’ve submitted and their

progress. To access this you simply run:

cf --qstat

..or if you want to see pipelines from all users:

cf --qstatall

Further help with clusterflow
You can see more clusterflow options by running:

cf --help

If you want to try writing your own pipelines (easy) or modules (hard) then you can also look at the full

clusterflow manual which is available from the projects web site at

http://www.bioinformatics.babraham.ac.uk/projects/clusterflow/

http://www.bioinformatics.babraham.ac.uk/projects/clusterflow/

 Using the Babraham Compute Cluster

27

Problems

If you encounter any problems with the cluster please get in touch with Simon Andrews in the

bioinformatics group, Mark Thompson in computing or Nicolas Rodriguez in computational

neurobiology who should be able to help, or to point you to the right person to speak to.

Further help

This document is intended to give you the information you need to start working in the cluster

environment. If you need more general help with working in a linux command line environment then

please ask a member of the bioinformatics group for the separate guide which covers the basic unix

commands you will need to work on the cluster. You can also approach anyone in the bioinformatics

group to discuss any work you want to do on the cluster and they will be able to help you with this.

