
Chapter 1

Introduction

1.1 New to system dynamics?

Minsky is one of a family of “system dynamics” computer programs. These
programs allow a dynamic model to be constructed, not by writing mathematical
equations or numerous lines of computer code, but by laying out a model of a
system in a block diagram, which can then simulate the system. These programs
are now the main tool used by engineers to design complex products, ranging
from small electrical components right up to passenger jets.

Minsky adds another means to create the dynamic equations that are needed
to define monetary flows—the “Godley Table”—which is discussed in the next
section for users who are experienced in system dynamics. In this section, we’ll
give you a quick overview of the generic system dynamics approach to building
a model.

Though they differ in appearance, they all work the same way: variables in
a set of equations are linked by wires to mathematical operators. What would
otherwise be a long list of equations is converted into a block diagram, and
the block diagram makes the causal chain in the equations explicit and visually
obvious.

For example, say you wanted to define the rate of employment as depending
on output (GDP), labor productivity and population. Then you could define a
set of equations in a suitable program (like Mathcad):

GDP := 100

LaborProductivity := 1

Population := 100

Workers := GDP÷ LaborProductivity

EmpRate := Workers÷ Population

EmpRate = 1

1

2 CHAPTER 1. INTRODUCTION

Or you could define it using a block diagram, such as Minsky:

100

1

GDP

LaborProductivity

100

Workers

Population

EmpRate

For a simple algebraic equation like this, modern computer algebra programs
like Mathcad are just as good as a block diagram programs like Vissim or Minsky.
But the visual metaphor excels when you want to describe a complex causal
chain.

These causal chains always involve a relationship between stocks and flows.
Economists normally model stocks and flows by adding an increment to a stock.
For example, the level of capital K is defined as a difference equation, where
capital in year t is shown as being capital in year t− 1 plus the investment that
took place that year:

Kt = Kt−1 + It−1

The problem with this approach is that in reality, capital is accumulating
on a daily, or even hourly, basis. It is better to model stock as continuous
quantities and for this reason, all stocks and flows in Minsky are handled instead
as integral equations. The amount of capital at time t is shown as the integral
of net investment between time 0 and today:

K(t) =

∫ t

0

I(s)ds

However, rather than being shown as an equation, the relationship is shown
as a diagram:

I ∫dt K

The advantages of the block diagram representation of dynamic equations
over a list of equations are:

• They make the causal relationships in a complex model obvious. It takes
a specialized mind to be able to see the causal relations in a large set of
mathematical equations; the same equations laid out as diagrams can be
read by anyone who can read a stock and flow diagram—and that’s most
of us;

1.2. EXPERIENCED IN SYSTEM DYNAMICS? 3

• The block diagram paradigm makes it possible to store components of a
complex block diagram in a group. For example, the fuel delivery system
in a car can be treated as one group, the engine as another, the exhaust
as yet another. This reduces visual complexity and also makes it possible
for different components of a complex model to be designed by different
groups and then “wired together” at a later stage.

For example, here’s a model of a 4 cylinder engine car—one of the simple
examples distributed with the program Vissim:

Programs like Vissim and Simulink have been in existence for almost 2
decades, and they are now mature products that provide everything their user-
base of engineers want for modeling and analyzing complex dynamic systems.
So why has Minsky been developed?

1.2 Experienced in system dynamics?

As an experienced system dynamics user (or if you’ve just read “New to system
dynamics?”), what you need to know is what Minsky provides that other system
dynamics programs don’t. That boils down to one feature: The Godley Table.
It enables a dynamic model of financial flows to be derived from a table that is
very similar to the accountant’s double-entry bookkeeping table.

The dynamics in financial flows could be modeled using the block diagram
paradigm. But it would also be very, very easy to make a mistake modeling
financial flows in such a system, for one simple reason: every financial flow
needs to be entered at least twice in a system—once as a source, and once as a
sink.

4 CHAPTER 1. INTRODUCTION

For example, if you go shopping and buy a new computer with your credit
card, you increase your debt to a bank and simultaneously increase the deposit
account of the retailer from whom you buy the computer. The two system
states in this model—your credit card (“BuyerCredit”) and the retailer’s deposit
account (“SellerDeposit”)—therefore have to have the same entry (let’s call this
“Card”) made into them. Such a transaction would look like this:

Card

∫dt BuyerCredit

∫dt SellerDeposit

That would work, but there’s nothing in the program that warns you if
you make a mistake like, for example, wiring up the BuyerCredit entry, but
forgetting the SellerDeposit one:

Card

∫dt BuyerCredit

∫dt SellerDeposit

Or, perhaps, wiring up both blocks, but giving one the wrong sign:

Card

∫dt BuyerCredit

∫dt SellerDeposit

In a very complex model, you might make a mistake like one of the above,
run the simulation and get nonsense results, and yet be unable to locate your
mistake.

Minsky avoids this problem by using the paradigm that accountants devel-
oped half a millennium ago to keep financial accounts accurately: double-entry
bookkeeping. Here is the same model in Minsky:

Flows ↓ / Stock Variables → BuyerCredit SellerDeposit Row Sum
asset liability

Initial Conditions 0 0 0
Buyer Accesses Credit Card −Card 0

1.2. EXPERIENCED IN SYSTEM DYNAMICS? 5

This is an inherently better way to generate a dynamic model of financial
flows, for at least two reasons:

• All financial transactions are flows between entities. The tabular layout
captures this in a very natural way: each row shows where a flow origi-
nates, and where it ends up

• The program adopts the accounting practice of double-entry bookkeeping,
in which entries on each row sum to zero. The source is shown as a “+”,
the sink is shown as a “−”, and assets are shown as a positive sum while
liabilities are shown as a negative. If you don’t ensure that each flow starts
somewhere and ends somewhere—say you make the same mistake as in
the block diagram examples above, then the program will identify your
mistake.

If you forget to enter the recipient in this transaction, then the Row Sum
identifies your mistake by showing that the row sums to “Card” rather than
zero:

Flows ↓ / Stock Variables → BuyerCredit SellerDeposit Row Sum
asset liability

Initial Conditions 0 0 0
Buyer Accesses Credit Card Card

And it also identifies if you give the wrong sign to one entry:

Flows ↓ / Stock Variables → BuyerCredit SellerDeposit Row Sum
asset liability

Initial Conditions 0 0 0
Buyer Accesses Credit Card Card 2Card

Minsky thus adds an element to the system dynamics toolkit which is funda-
mental for modeling the monetary flows that are an intrinsic aspect of a market
economy. Future releases will dramatically extend this capability.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Getting Started

2.1 System requirements

Minsky is an open source program available for Windows, Mac OS X, and var-
ious Linux distributions, as well as compilable on any suitable Posix compliant
system. Go to our SourceForge page to download the version you need. Linux
packages are available from the OpenSUSE build service.

2.2 Getting help

Press the F1 key, or select “help” from the context menu. Help is context-
sensitive.

2.3 Components of the Program

There are 6 components to the Minsky interface:

1. The menus.

File Edit Insert Options Runge Kutta Help

2. The Run buttons

3. The simulation speed slider

7

https://minsky.sourceforge.io
https://build.opensuse.org/package/show/home:hpcoder1/minsky

8 CHAPTER 2. GETTING STARTED

4. The Zoom buttons

5. The Wiring and Equation tabs

6. The design icons

7. And finally the Design Canvas–the large drawing area beneath the buttons
and icons.

2.3.1 Menu

File Edit Insert Options Runge Kutta Help
The menu controls the basic functions of saving and loading files, default

settings for the program, etc. These will alter as the program is developed; the
current menu items (as at the August 2016 Cantillon release) are:

File

About Minsky Tells you the version of Minsky that you are using.

2.3. COMPONENTS OF THE PROGRAM 9

New System Clear the design canvas.

Open Open an existing Minsky file (Minsky files have the suffix of “mky”).

Recent Files Provides a shortcut to some of your previously opened Minsky
files.

Library Opens a repository of models for the Minsky simulation system.

Save Save the current file.

Save As Save the current file under a new name.

Insert File as Group Insert a Minsky file directly into the current model as
a group

Output LaTeX Produce the set of equations that define the current system
for use in documenting the model, for use in LaTeX compatible typesetting
systems. If your LaTeX implemention doesn’t support breqn, untick the
wrap long equations option, which can be found in the preferences panel
under the options menu.

Output MatLab Output a MatLab function that can be used to simulate the
system in a MatLab compatible system, such as MatLab1 or Octave2.

Log simulation Outputs the results of the integration variables into a CSV
data file for later use in spreadsheets or plotting applications.

Recording Record the states of a model as it is being built for later replay.
This is useful for demonstrating how to build a model, but bear in mind
that recorded logs are not, in general, portable between versions of Minsky.

Replay recording Replay a recording of model states.

Quit Exit the program. Minsky will check to see whether you have saved your
changes. If you have, you will exit the program; if not, you will get a
reminder to save your changes.

Debugging use Items under the line are intended for developer use, and will
not be documented here. Redraw may be useful if the screen gets messed
up because of a bug.

Edit

• Undo and Redo allow you to step back and forward in your editing history.
If you step back a few steps, and then edit the model, all subsequent model
states will be erased from the history.

1https://en.wikipedia.org/wiki/MATLAB
2http://www.gnu.org/software/octave/

https://en.wikipedia.org/wiki/MATLAB
http://www.gnu.org/software/octave/

10 CHAPTER 2. GETTING STARTED

• Cut/copy/paste. Selecting, or lassoing a region of the canvas will select a
group of icons, which will be shaded to indicate the selected items. Wires
joining two selected items will also be selected. Note that, compatible with
X-windows, selecting automatically performs a copy, so the copy operation
is strictly redundant, but provided for users familiar with systems where
an explicit copy request is required. Cut deletes the selected items. Paste
will paste the items in the clipboard as a group into the current model. At
the time of writing, copy-pasting between different instances of Minsky,
or into other applications, may not work on certain systems. Pasting the
clipboard into a text-based application will be a Minsky schema XML
document.

L

N

emprate

NAIRU

PhillipsSlope

⇒

L

N

emprate

NAIRU

PhillipsSlope

• Create a group using the contents of the selection. Groups allow you to
organise more complicated systems specification into higher level modules
that make the overall system more comprehensible.

Insert

This menu contains a set of mathematical operator blocks for placement on the
Canvas. You can get the same effect by clicking on the Design Icons. Also
present are entries for Godley table items and Plots.

Options

The options menu allows you to customise aspects of Minsky.

Preferences

• Godley table double entry. Applies double entry book keeping se-
mantics to the Godley table, where assets and liabilites have oppo-
site mathematical meaning. See the Godley table section for more
details. Unchecking this option reverts to a simpler mode where each
stock (Godley table column) is treated the same.

• Godley table show values. When ticked, the values of flow variables
are displayed in the Godley table whilst a simulation is running. This
will tend to slow down the simulation somewhat.

• Godley table output style — whether +/− or DR/CR (debit/credit)
indicators are used.

2.3. COMPONENTS OF THE PROGRAM 11

• Number of recent files to display — affects the recent files menu.

• Wrap long equations in LaTeX export. If ticked, use the breqn pack-
age to produce nicer looking automatically line-wrapped formulae.
Because not all LaTeX implementations are guaranteed to support
breqn, untick this option if you find difficulty.

Background colour — select a colour from which a colour scheme is com-
puted.

Runge Kutta

• Controls aspect of the adaptive Runge-Kutta equation solver, which trade
off performance and accuracy of the model.

• Note a first order explicit solver is the classic Jacobi method, which is the
fastest, but least accurate solver.

• The algorithm is adaptive, so the step size will vary according to how stiff
the system of equations is.

• Specifying a minimum step size prevents the system from stalling, at the
expense of accuracy when the step size reaches that minimum.

• Specifying a maximum step size is useful to ensure one has sufficient data
points for smooth plots.

• An iteration is the time between updates of the screen, increasing the
number of solver steps per iteration decreases the overhead involved in
updating the display, at the expense of smoothness of the plots.

Help

Provides an in-program link to this manual.

2.3.2 Run Buttons

The Run buttons respectively:

1. Start a simulation–when started the button changes to a pause icon, al-

lowing you to pause the simulation .

2. Stop a simulation and reset the simulation time to zero

3. Step through the simulation one iteration at a time.

12 CHAPTER 2. GETTING STARTED

2.3.3 Zoom buttons

The Zoom buttons zoom in and out on the wiring canvas. The same func-
tionality is accessed via the mouse scroll wheel. The reset zoom button 0

resets the zoom level to 1, and also recentres the canvas. It can also be used to
recentre the equation view.

2.3.4 Speed slider

The speed slider controls the rate at which a model is simulated. The default
speed is the maximum speed your system can support, but you can slow this
down to more closely observe dynamics at crucial points in a simulation.

2.3.5 Simulation time

In the right hand top corner is a textual display of the current simulation time
t, and the current (adaptive) difference between iterations ∆t.

2.3.6 Wiring and Equations Tabs

This allows you to switch between the visual block diagram wiring view and
the more mathematical equations view.

2.3.7 Design Icons

These are the “nuts and bolts” of any system dynamics program. The num-
ber of icons will grow over time, but the key ones are implemented now:

Godley Table . This is the fundamental element of Minsky that is not
found (yet) in any other system dynamics program.

Clicking on it and placing the resulting Bank Icon on the Canvas enters a
Godley table into your model:

2.3. COMPONENTS OF THE PROGRAM 13

Double-click on the Bank Icon (or right-click and choose “Open Godley
Table” from the context menu) and you get a double-entry bookkeeping
table we call a Godley Table, which looks like the following onscreen:

Use this table to enter the bank accounts and financial flows in your model.
We discuss this later in the Tutorial (Monetary).

Variable var . This creates an entity whose value changes as a function of time
and its relationship with other entities in your model. Click on it and a
variable definition window will appear:

The only essential step here is providing a name for the Variable. You
can also enter a value for it (and a rotation in degrees), but these can be
omitted. In a dynamic model, the value will be generated by the model
itself, provided its input is wired.

14 CHAPTER 2. GETTING STARTED

When you click on OK (or press Enter), the newly named variable will
appear in the top left hand corner of the Canvas. Move the mouse cursor
to where you want to place the variable on the Canvas, click, and it will
be placed in that location.

Constant const creates an entity whose value is unaffected by the simulation or
other entities in the model—but it can be varied during a simulation run
by the user. Click on it and a constant definition window will appear:

The only essential element here is its value. You can also specify its
rotation on the Canvas in degrees, and its slider parameters if you make
the slider active. This lets you vary a parameter while a simulation is
running—which is useful if you wish to explore a range of policy options
while a model is running.

A constant is just a type of variable, which also include parameters (named
constants), flow variables, stock variables and integration variables. In
fact there is no real conceptual difference between creating a constant or
creating a variable, as you can switch the type using the type field.

Time t embeds a reference to the simulation time on the Canvas. This is not
necessary in most simulations, but can be useful if you want to make a
time-dependent process explicit, or control the appearance of a graph.

For example, by default a graph displays the simulation time on the hor-
izontal axis, so that cycles get compressed as a simulation runs for a
substantial period:

2.3. COMPONENTS OF THE PROGRAM 15

Wage

EmploymentRate

x 10

0 1 2 3

x 0.1

-10

-5

0

5

10

If a Time block is added to the marker for the x-axis range, you can control
the number of years that are displayed. This graph is set up to show a
ten year range of the model only:

Wage

EmploymentRate

Range

tt

x 1

8 9 10 11 12 13 14 15 16 17

x 0.1

-10

-5

0

5

10

Integration ∫dt . This inserts a variable whose value depends on the integral of
other variables in the system. This is the essential element for defining a
dynamic model. Click on it and the following entity will appear at the top
left hand side of the canvas (and move with your mouse until you click to
place it somewhere:

16 CHAPTER 2. GETTING STARTED

∫dt int1

“int1” is just a placeholder for the integration variable, and the first thing
you should do after creating one is give it a name. Double-click on the
“int1”, or right click and choose Edit. This will bring up the following
menu:

Change the name to something appropriate, and give it an initial value.
For example, if you were building a model that included America’s popu-
lation, you would enter the following:

The integrated variable block would now look like this:

∫dt Population

To model population, you need to include a growth rate. According to
Wikipedia, the current US population growth rate is 0.97 percent per
annum. Expressed as an equation, this says that the annual change in
population, divided by its current level, equals 0.0097:

1

Population(t)
·
(
d

dt
Population(t)

)
= 0.0097

2.3. COMPONENTS OF THE PROGRAM 17

To express this as an integral equation, firstly we multiply both sides of
this equation by Population to get:

d

dt
Population(t) = 0.0097 · Population(t)

Then we integrate both sides to get an equation that estimates what the
population will be T years into the future as:

Population(T) = 315 +

∫ T

0

0.0097 · Population(t)dt

Here, 315 (million) equals the current population of the USA, the year zero
is today, and T is some number of years from today. The same equation
done as a block diagram looks like this:

GrowthRate

∫dt Population

Or you can make it look more like the mathematical equation by right-
clicking on “Population” and choosing “Copy Var”. Then you will get
another copy of the Population variable, and you can wire up the equation
this way:

GrowthRate

Population

∫dt Population

Either method can be used. I prefer the latter because it’s neater, and it
emphasizes the link between the simple formula for a percentage rate of
change and a differential equation.

Derivative Operator d
dt This operator symbolically differentiates its input,

provided the input is differentiable. An error is generated if the input is
not differentiable.

18 CHAPTER 2. GETTING STARTED

Plus, Minus, Multiply and Divide blocks . These execute
the stated binary mathematical operations. Each input can take multiple
wires as well—so that to add five numbers together, for example you can
wire 1 input to one port on the Add block, and the other four to the other
port.

Min & Max Functions These take the minimum and maximum values, re-
spectively. These also allow multiple wires per input.

Power and Logarithm xy
x

y and logb
x

b These are binary operations (taking two
arguments). In the case of the power operation, the exponent is the top
port, and the argument to be raised to that exponent is the bottom port.
This is indicated by the x and y labels on the ports. In the case of
logarithm, the bottom port (labelled b) is the base of the logarithm.

Logical Operators < ≤, =, ∧ ∨ ¬ (and, or, not) < , ≤ , = , , and
¬ . These return 0 for false and 1 for true.

Other functions These are a fairly standard complement of mathematical
functions.

Data block A data block interpolates a sequence of empirical values, which
may be generated outside of Minsky, and imported as a CSV file. This
effectively defines a piecewise linear function.

Plot widget Add plots to the canvas.

Switch Add a piecewise-defined function block to the canvas. Also known
as a hybrid function.

Notes Add textual annotations

2.3.8 Design Canvas

The Design Canvas is where you develop your model. A model consists of a
number of blocks—variables, constants and mathematical operators—connected
by wires.

2.3. COMPONENTS OF THE PROGRAM 19

2.3.9 Wires

The wires in a model connect blocks together to define equations. For example,
to write an equation for 100/33, you would place a const on the canvas, and give
it the value of 100:

Then do the same for 33, and place a divide block on the canvas:

20 CHAPTER 2. GETTING STARTED

100

3

Then click on the right hand edge of 100 and drag to extend the wire to the
numerator (×) port of the divide operation.

Finally, add the other wire.

2.4 Working with Minsky

2.4.1 Components in Minsky

There are a number of types of components in Minsky

1. Mathematical operators such as plus (+), minus (-)

2. Constants (or parameters, which are named constants) which are given a
value by the user

3. Variables whose values are calculated by the program during a simulation
and depend on the values of constants and other variables; and

4. Godley Tables, which define both financial accounts and the flows between
them. In the language of stock and flow modelling, the columns of a
Godley table are the stocks, which are computed by integrating over a
linear combination of flow variables.

5. Integrals — represent a variable computed by integrating a function for-
ward in time.

6. Groups, which allow components to be grouped into modules that can be
used to construct more complex models.

2.4. WORKING WITH MINSKY 21

2.4.2 Inserting a model component

There are three ways to insert a component of a model onto the Canvas:

1. Click on the desired Icon on the Icon Palette, drag the block onto the
Canvas and release the mouse where you want to insert it

2. Choose Insert from the menu and select the desired block there

22 CHAPTER 2. GETTING STARTED

3. Right-click on an existing block and choose copy. Then place the copy
where you want it on the palette.

2.4.3 Creating an equation

Equations are entered in Minsky graphically. Mathematical operations like ad-
dition, multiplication and subtraction are performed by wiring the inputs up to
the relevant mathematical block. The output of the block is then the result of
the equation.

For example, a simple equation like

100/3 = 33.3

is performed in Minsky by defining a constant block with a value of 100, defining
another with a value of 3, and wiring them up to a divide-by block. Then attach
the output of the divide block to a variable, and run the model by clicking on

:

100

3

Answer

x 0.1

-10 -8 -6 -4 -2 0 2 4 6 8

x 0.1

-8

-6

-4

-2

0

2

4

6

8

If you click on the equation tab, you will see that it is:

Answer =
100

3

2.4. WORKING WITH MINSKY 23

Very complex equations—including dynamic elements like integral blocks
and Godley Tables—are designed by wiring up lots of components, with the
output of one being the input of the next. See the tutorial for examples.

2.4.4 Wiring components together

A model is constructed by wiring one component to another in a way that defines
an equation. Wires are drawn from the output port of one block to the input
port of another. Ports are circles on the blocks to which wires can be attached,
which can be seen when hovering the pointer over the block. Variables have an
input and an output port; constants and parameters only have an output port.
A mathematical operator has as many input ports as are needed to define the
operation.

To construct an equation, such as Fred - Wilma = Barney:

Click the mouse near the output port of one block and drag the cursor to the
input port of another while holding the mouse button down. An arrow extends
out from the output port. Release the mouse button near the required input
port of the operator. A connection will be made.

Fred

Wilma

The equation is completed by wiring up the other components in the same
way.

Fred

Wilma

Barney

2.4.5 Creating a banking model

Creating a bank

The first step in creating a model with a banking sector is to click on the Godley
Table Icon in the Icon Palette, and place the block somewhere on the Canvas.

24 CHAPTER 2. GETTING STARTED

Entering accounts

Double click or right click on the Godley table block to bring up the Godley
Table.

When a Godley Table is first loaded, it has room for one account to be
defined. To create an additional accounts, click on the ‘+’ button above the first
account. One click then adds another column in which an additional account
can be defined.

Flows ↓ / Stock Variables →
noAssetClass

Initial Conditions 0 0

A column can be deleted by clicking on the ‘–’ button above the column.
To define bank accounts in the system you enter a name into the row la-

beled “Flows V / Stock Variables ->”. For example, if you were going to
define a banking sector that operated simply as an intermediary between “Pa-
tient” people and “Impatient” people—as in the Neoclassical “Loanable Funds”
model–you might define the following accounts:

Flows ↓ / Stock Variables → Reserves Patient Impatient Safe
noAssetClass

Initial Conditions 0 0 0 0

As you enter the accounts, they appear at the bottom of the Bank block on
the canvas:

Godley0

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

2.4.6 Defining account types

Bank accounts must be classified as either an Asset, a Liability, or the Equity of
the relevant Bank, using the drop-down menu currently labeled noAssetClass

at the top of each account. In this model, Reserves are an asset of the banking
sector, the accounts of “Patient” and “Impatient” are liabilities, and the “Safe”
is the equity of the banking system. Click on the noAssetClass button and
this drop-down menu will appear:

2.4. WORKING WITH MINSKY 25

Choose the relevant entry for each column, and the accounts will be properly
classified when the model is simulated:

Flows ↓ / Stock Variables → Reserves Patient Impatient Safe
asset liability equity

Initial Conditions 0 0 0 0

Entering flows between accounts

Flows between accounts are entered by typing text labels in the accounts in-
volved. The source label is entered as a simple name—for example, if Patient
is lending money to Impatient, the word “Lend” could be used to describe this
action. Firstly you need to create a row beneath the “Initial Conditions” row
(which records the amount of money in each account when the simulation be-
gins). You do this by clicking on the ‘+’ key on the Initial Conditions row. This
creates a blank row for recording a flow between accounts.

Flows ↓ / Stock Variables → Reserves Patient Impatient Safe
asset liability equity

Initial Conditions 0 0 0 0

The cell below “Initial Conditions” is used to give a verbal description of
what the flow is:

Flows ↓ / Stock Variables → Reserves Patient Impatient Safe
asset liability equity

Initial Conditions 0 0 0 0
Patient lends to Impatient

The flows between accounts are then recorded in the relevant cells under-
neath the columns. Here we will start with putting the label “Lend” into the
Patient column.

Flows ↓ / Stock Variables → Reserves Patient Impatient Safe
asset liability equity

Initial Conditions 0 0 0 0
Patient lends to Impatient Lend

26 CHAPTER 2. GETTING STARTED

Notice that the program shows that the Row Sum for this transaction is
currently “Lend”, when it should be zero to obey the double-entry bookkeeping
rule that all rows must sum to zero. This is because a destination for “Lend” has
not yet been specified. The destination is Impatient’s account, and to balance
the row to zero this part of the transaction must be entered as “-Lend”:

Flows ↓ / Stock Variables → Reserves Patient Impatient Safe
asset liability equity

Initial Conditions 0 0 0 0
Patient lends to Impatient Lend −Lend

This might appear strange if you are not used to accounting standards—
“shouldn’t the Patient account fall because of the loan, while the Impatient
account should rise?”—but what is shown in the table makes sense, because all
accounts are perceived from the Bank’s point of view. Deposits at a bank are
liabilities for the bank, and are shown as a negative amount, while assets are
recorded as a positive amount. So a loan from Patient to Impatient decreases
the Bank’s liabilities to Patient, and increases the Bank’s liabilities to Impatient.

The same rule applies to the Initial Conditions (the amount of money in
each of the accounts prior to the flows between accounts): the Initial Conditions
must sum to zero. This requires that there are entries on the Asset side of the
Banking ledger that exactly match the sum of Liabilities and Equity (Equity is
also shown as a negative in double-entry bookkeeping):

Flows ↓ / Stock Variables → Reserves Patient Impatient Safe
asset liability equity

Initial Conditions 120 −100 0 −20
Patient lends to Impatient Lend −Lend

As you enter flows, these appear on the left hand side of the bank block:

Godley0

Lend

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

Defining flows

The entries in the Godley Table represent flows of money, which are denom-
inated in money units per unit of time. The relevant time dimension for an

2.4. WORKING WITH MINSKY 27

economic simulation is a year (whereas in engineering applications, the relevant
time dimension is a second), so whatever you enter there represents a flow of
money per year.

You define the value of flows by attaching a constant or variable to the input
side of the flow into the bank as shown on the Canvas. For example, you could
assign Lend a value of 10 (which would represent a loan of $10 per year by
Patient to Impatient) by:

Create a constant with a value of 10, and attaching this to the input side of
Lend:

10

Godley0

Lend

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

What you have now defined is an annual flow from Patient to Impatient
of $10. In the dynamic equations this model generates, Minsky converts all
amounts in accounts to positive sums—it shows the financial system from the
point of the overall economy, rather than from the point of view of the bank:

Lend = 10
dImpatient

dt
= Lend

dPatient

dt
= −Lend

dReserves

dt
=

dSafe

dt
=

If you attach a graph to the accounts at the bottom of the bank block, you
will see the impact of this flow over time on the balances of the two accounts.
Patient’s account begins at $100 and falls at $10 per year, while Patient’s ac-
count begins at $0 and rises by $10 per year.

28 CHAPTER 2. GETTING STARTED

10

x 1

0 2 4 6 8 10 12

x 10

0

2

4

6

8

10

Godley0

Lend

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

Obviously this will result in a negative total worth for Patient after 10 years,
so it is not a realistic model. A more sensible simple model would relate lending
to the amount left in Patient’s account (and a more complex model would relate
this to many other variables in the model). That is done in the next example,
where a constant “lendrate” has been defined and given the value of 0.1, and
Lend is now defined as 0.1 times the balance in Patient’s account. This now
results in a smooth exponential decay of the amount in the Patient account,
matched by a rise in the amount in Impatient account.

2.4. WORKING WITH MINSKY 29

lendrate

x 10

0 1 2 3

x 10

0

2

4

6

8

10

Godley0

Lend

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

This is because the equation you have defined is identical to a radioactive
decay equation, with the amount in the Patient account falling at 10 percent
per year:

Lend = lendrate× Patient
dImpatient

dt
= Lend

dPatient

dt
= −Lend

Note however that there are now wires crossing over other wires? There is
a neater way to define flows.

Copying Godley Table input & outputs

Right-click on the inputs and outputs of a Godley Table and choose “copy” from
the drop-down menu:

30 CHAPTER 2. GETTING STARTED

Place the copied flows and accounts and place them away from the table.
Then wire up your definition there:

lendrate

Lend
Patient

This now results in a much neater model. The same process can be used to
tidy up graphs as well:

2.4. WORKING WITH MINSKY 31

lendrate

Patient

Lend

Lend Patient

Impatient

x 10

0 1 2 3 4

x 1

0

2

4

6

8

10

x 10

0 1 2 3 4

x 10

0

2

4

6

8

10

Godley0

Lend

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

A more complex model would have many more flows, and these in turn would
depend on other entities in the model, and be time-varying rather than using
a constant “lendrate” as in this example—see the Tutorial on a Basic Banking
Model for an example. This example uses the engineering concept of a “time
constant”, which is explained in the next section.

Using “Time Constants”

The value of 0.1 means that the amount of money in the Patient account falls
by one tenth every year (and therefore tapers towards zero). An equivalent way
to express this is that the “time constant” for lending is the inverse of 1/10, or
ten years. The next model uses a variable called τLend, and gives it a value of
10:

32 CHAPTER 2. GETTING STARTED

As the simulation shows, the two models have precisely the same result
numerically:

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

Lend
lendrate

Patient
Lend

Lend

Patient

Impatient

R
e

s
e

rv
e

s
2

P
a

ti
e

n
t2

Im
p

a
ti

e
n

t2

S
a

fe
2

Lend2

Lend2 Patient2

Impatient2

Patient2
Lend2

�Lend

x 10

0 1 2 3 4

x 10

0

2

4

6

8

10

x 10

0 1 2 3 4

x 1

0

2

4

6

8

10

x 10

0 1 2 3 4 5

x 1

0

2

4

6

8

10

x 10

0 1 2 3 4 5

x 10

0

2

4

6

8

10

Godley0

Lend

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

Godley289

Lend2

R
e

s
e

rv
e

s
2

P
a

ti
e

n
t2

Im
p

a
ti

e
n

t2

S
a

fe
2

The advantage of the time constant approach is that it is defined in terms

2.4. WORKING WITH MINSKY 33

of the time that a process takes. A time constant of 10 says that, if this rate
of lending was sustained (rather than declining as the account falls), then in
precisely 10 years, the Patient account would be empty. The advantages of
this formulation will be more obvious in the tutorial.

Multiple banks

There can be any number of Godley Tables—each representing a different finan-
cial institution or sector in an economy—in the one diagram. The name of the
institution can be altered by clicking on the default name (“Godley0” in the first
one created) and altering it. Here is an example with 4 such institutions/sectors
defined:

Central Bank Commercial Bank

Retail Banks Non-Bank Fls

If there are interlocking accounts in these banks—if one lends to another
for example—then what is an asset for one must be shown as a liability for the
other.

34 CHAPTER 2. GETTING STARTED

Chapter 3

Tutorial

3.1 Basic System Dynamics model

In 1965, Richard Goodwin, the great pioneer of complexity in economics, pre-
sented the paper “A Growth Cycle” to the First World Congress of the Econo-
metric Society in Rome. It was later published in a book collection (Goodwin,
Richard M. 1967. ”A Growth Cycle,” in C. H. Feinstein, Socialism, Capitalism
and Economic Growth. Cambridge: Cambridge University Press, pp. 54–58.);
to my knowledge it was never published in a journal.

Goodwin’s model has been subjected to much critical literature about im-
plying stable cycles, not matching empirical data, etc., but Goodwin himself
emphasized that it was a “starkly schematized and hence quite unrealistic model
of cycles in growth rates”. He argued however that it was a better foundation
for a more realistic model than “the more usual treatment of growth theory or
of cycle theory, separately or in combination.”

Goodwin emphasized the similarity of this model to the Lokta-Volterra
model of interacting predator and prey, which can make it seem as if it was
derived by analogy to the biological model. But in fact it can easily be derived
from a highly simplified causal chain:

• The level of output (Y) determines the level of employment (L), with
L = Y/a where a is a measure of labor productivity;

• Given a population N , the employment rate λ = L/N plays a role in
determining the rate of change of the wage w: Goodwin used a linear
approximation to a non-linear “Phillips Curve”:

35

https://en.wikipedia.org/wiki/Goodwin_model_(economics)

36 CHAPTER 3. TUTORIAL

0 1

ẇ/w

λ

His linear approximation was:

1

w

d

dt
w = −γ + ρ · λ

• In a simple two-class model, profits Π equals the level of output Y minus
the wage bill: Π = Y − wL

• For simplicity, Goodwin assumed that all profits were invested, so that
Investment equals profits: I = Π.

• Investment is the rate of change of the capital stock K;

• The level of output is, to a first approximation, determined by the level
of capital stock (K). A simple way of stating this is that Y is propor-
tional to K: Y = K/v, where v is a constant (Goodwin notes that this
relation “could be softened but it would mean a serious complicating of
the structure of the model”); and finally

• Goodwin assumed that labor productivity grew at a constant rate α, while
population grew at a constant rate β.

Goodwin published the model as a reduced form equation in the two
system states the employment rate (λ) and the workers’ share of output
(ω):

d

dt
λ = λ

(
1− ω
v
− α− β

)
d

dt
ω = ω · (ρ · λ− γ − α)

3.1. BASIC SYSTEM DYNAMICS MODEL 37

This form is useful for analytic reasons, but it obscures the causal chain that
actually lies behind the model. With modern system dynamic software, this
can be laid out explicitly, and we can also use much more meaningful names.
We’ll start with defining output (which is a variable). Click on var on the Icon
Palette, or click on the Operations menu and choose “Variable”. This will open
up the “Specify Variable Name” window:

Enter “GDP” into the “Name” field, and leave the other fields blank—since
GDP is a variable and we’re defining a dynamic system, the value of GDP
at any particular point in time will depend on the other entities in the model.
Now Click OK (or press “Enter”). The variable will now appear, attached to
the cursor. Move to a point near the top of the screen and click, which will
place the variable at that location.

We are now going to write the first part of the model, that Labor (Labor)
equals output (GDP) divided by labor productivity (LabProd). Just for the
sake of illustration, we’ll make a a parameter, which is a named constant (this
can easily be modified later). For this we start by clicking on const on the
Palette, or by choosing Insert/variable from the menu. This will pop-up the
Edit Constant window:

38 CHAPTER 3. TUTORIAL

There is actually no real difference between the “Edit constant” dialog and
the “Edit variable” dialog. The window’s title differs, and the default value
of Type is “constant” instead of “flow”. We’re going to select “parameter”,
allowing one to give the parameter a name.

Give the paramter the name “LabProd” and the value of 1 (i.e., one unit
of output per worker). Click OK or press Enter and the constant LabProd will
now be attached to the cursor. Place it below GDP:

Now we need to divide GDP by LabProd. Click on the symbol on the
palette and the symbol will be attached to the cursor. Drag it near the other
two objects and click. Your Canvas will now look something like this:

GDP

LabProd

Now to complete the equation, you have to attach GDP to the top of the
divide block and LabProd to the bottom.

Now move your cursor to the right hand side of GDP and click, hold the
mouse button down, and drag. An arrow will come out from GDP . Drag this
arrow to the top of the divide block (where you’ll see a tiny multiply sign) and
release the mouse. You should then see this:

GDP

LabProd

3.1. BASIC SYSTEM DYNAMICS MODEL 39

When the mouse hovers over a block, you will then see little circles that
identify the input and output ports of the block:

GDP

LabProd

Those are the connection points for wires, so start dragging from one and
release on the other. Now wire LabProd to the bottom of the Divide block
(where you’ll see a miniature divide symbol (blown up below):

GDP

LabProd

Then click on var in the Design Icons to create a new variable, call it Labor,
place it the the right of the Divide block, and wire the output port from the
Divide block to the input port for Labor:

GDP

LabProd

Labor

To show the correspondence between the flowchart above and standard mod-
eling equations, click on the equations tab:

GDP =

Labor =
GDP

LabProd

Now let’s keep going with the model. With Labor defined, the employment
rate will be Labor divided by Population. Define Population as a parameter
(we’ll later change it to a variable), and give it a value of 110.

40 CHAPTER 3. TUTORIAL

Add it to the Canvas and you are now ready to define the employment rate—
another variable. Click on var , give it the name “\lambda” (be sure to include
the backslash symbol), put another Divide block on the canvas, choose Wire
mode and wire this next part of the model up. You should now have:

GDP

LabProd

Labor

Population

λ

Now switch to the equations tab, and you will see

GDP =

Labor =
GDP

LabProd

λ =
Labor

Population

Notice that Minsky outputs a Greek λ in the equation. You can input
such characters directly, if your keyboard supports them as unicode characters,
however you can also use a subset of the LaTeX language to give your variables
more mathematial names.

With the employment rate defined, we are now ready to define a “Phillips
Curve” relationship between the level of employment and the rate of change
of wages. There was far more to Phillips than this (he actually tried to intro-
duce economists to system dynamics back in the 1950s), and far more to his

3.1. BASIC SYSTEM DYNAMICS MODEL 41

employment-wage change relation too, and he insisted that the relationship was
nonlinear (as in Goodwin’s figure above). But again for simplicity we’ll define
a linear relationship between employment and the rate of change of wages.

Here we need to manipulate the basic linear equation that Goodwin used:

1

w

d

dt
w = −γ + ρ · λ

Firstly multiply both sides by w:

d

dt
w = w · (−γ + ρ · λ)

Then integrate both sides (because integration is a numerically much more
stable process than differentiation, all system dynamics programs use integration
rather than differentiation):

w = w0 +

∫
w · (−γ + ρ · λ)

In English, this says that the wage now is the initial wage plus the integral
of the wage multiplied by its rate of change function. That’s what we now
need to add to the Canvas, and the first step is to spell out the wage change
function itself. Firstly, since we’re using a linear wage response function, the
rate of employment has to be referenced to a rate of employment at which
the rate of changes is zero. I suggest using Milton Friedman’s concept of a
“Non-Accelerating-Inflation-Rate-of-Unemployment”, or NAIRU. We need to
define this constant, subtract it from 1, and subtract the result from the actual
employment rate λ. To enter 1, click on const , define a constant and give it a
value of 1. Then define another variable NAIRU, and give it a value of 0.05 (5%
unemployment). Select “parameter” as the variable type. Subtract this from 1
and subtract the result from λ. You should have the following:

GDP

LabProd

Labor

Population

�

1

NAIRU

42 CHAPTER 3. TUTORIAL

Now we need to multiply this gap between the actual employment rate and
the “NAIRE” rate by a parameter that represents the response of wages to this
gap. Let’s call this parameter Emp {Response} (remember to include the
underscore and the braces). Define the parameter, give it a value of 10, and
multiply (λ minus NAIRE) by it:

GDP

LabProd

Labor

Population

�

1

NAIRU

EmpResponse

Now we are ready to add a crucial component of a dynamic model: the
integral block, which takes a flow as its input and has the integral of that flow
as the output. The wage rate w is such a variable, and we define it by clicking
on the ∫dt symbol in the Icon Palette (or by choosing Operations/Integrate from
the Insert menu). This then attaches the following block to the cursor:

∫dt int1

Now we need to rename this from the default name of “int1” to “w” for the
wage rate. Either right click or double-click on “int1” and this will bring up the
edit window . Rename it to “w” and give it a value of 1:

To compete the integral equation, we need to multiply the linear employ-
ment response function by the current wage before we integrate it (see the last
equation above). There are two ways to do this. First, place a multiply block
between the wage change function and the integral block, wire the function up
to one input on the multiply block, and then either:

3.1. BASIC SYSTEM DYNAMICS MODEL 43

• wire the output of the w block back to the other input on multiply block;
or

• Right-click on w, choose “Copy Var”, place that copy before the multiply
block, and wire it up.

The first method gives you this initial result:

∫dt w

That looks messy, but notice the blue dot on the wire? Click and drag on
that and you will turn the straight line connector into a curve:

GDP

LabProd

Labor

Population

�

1

NAIRU

EmpResponse

∫dt w

The second approach, which I personally prefer (it’s neater, and it precisely
emulates the integral equation), yields this result:

GDP

LabProd

Labor

Population

�

1

NAIRU

EmpResponse

w

∫dt w

From this point on the model develops easily—“like money for old rope”, as
one of my maths lecturers used to say. Firstly if we multiply the wage rate w
by Labor we get the Wage Bill. To do this, firstly create the variable Wage
Bill, and put it well below where w currently is on your diagram:

44 CHAPTER 3. TUTORIAL

GDP

LabProd

Labor

Population

�

1

NAIRU

EmpResponse

w

WageBill

∫dt w

Now right-click on WageBill and choose “Flip”. This rotates the block
through 180 degrees (any arbitrary rotation can be applied from the variable
definition window itself). Now right-click on Labor, which you’ve already de-
fined some time ago, and choose “Copy”. Place the copy of Labor to the right
of WageBill:

WageBill

Labor

Now insert a multiply block before WageBill, and wire w and Labor up to
it. Curve the wire from w using the blue dots (you can do this multiple times to
create a very curved path: each time you create a curve, another 2 curve points
are added that you can also manipulate, as I have done below:

3.1. BASIC SYSTEM DYNAMICS MODEL 45

GDP

LabProd

Labor

Population

�

1

NAIRU

EmpResponse

w

WageBill
Labor

∫dt w

The next step is to subtract the WageBill from GDP to define Profits.
Take a copy of GDP, insert it above WageBill, insert a subtract block, and
wire it up to define the variable Profits:

Pro�ts
GDP

WageBill

In the simple Goodwin model, all Profits are invested, and investment of
course is the rate of change of the capital stock Capital. Create a variable
called Investment, wire this up to Profits, and then create a new integral variable
Capital using the ∫dt icon. Right-click or double-click on it to rename int2 to
Capital, and give it an initial value of 300:

Wire this up to Investment:

Investment Pro�t∫dtCapital

46 CHAPTER 3. TUTORIAL

Now there’s only one step left to complete the model: define a parameter
CapOutputRatio and give it a value of 3:

Divide Capital by this, and wire the result up to the input on GDP. You
have now built your first dynamic model in Minsky:

Before you attempt to run it, do two things. Firstly from the Runge Kutta
menu item, change the Max Step Size to 0.01—to get a smoother simulation.

Secondly, add some graphs by clicking on the icon, placing the graph
in the middle of the flowchart, and wiring up λ and w to two of the four inputs
on the left hand side. You will now see that, rather than reaching equilibrium,
the model cycles constantly:

3.2. BASIC BANKING MODEL 47

GDP

LabProd

Labor

Population

�

1

NAIRU

EmpResponse

w

WageBill
Labor

GDP

Pro�tsInvestment

CapOutRatio

�

w

∫dt w

∫dtCapital

x 1

0 2 4 6 8 10 12

x 0.1

8

9

10

11

12

13

If you click on the equations tab, you will see that you have defined the
following system of equations:

GDP =
Capital

CapOutRatio

Investment = Profits

Labor =
GDP

LabProd
Profits = GDP−WageBill

WageBill = w × Labor

λ =
Labor

Population

ω =
WageBill

GDP
dw

dt
= EmpResponse × (λ− (1−NAIRU)× w

dCapital

dt
= Investment

At this level of complexity, the equation form—if you’re accustomed to work-
ing in equations—is as accessible as the block diagram model from which it was
generated. But at much higher levels of complexity, the block diagram is far
easier to understand since it displays the causal links in the model clearly, and
can be structured in sub-groups that focus on particular parts of the system.

3.2 Basic Banking model

If you haven’t yet read the section on Creating a Banking Model, do so now.
This tutorial starts from the skeleton of the “Loanable Funds” model built in
that section, and using time constants to specify how quickly lending occurs.

48 CHAPTER 3. TUTORIAL

3.2.1 Loanable Funds

Our model begins with the single operation of Patient lending to Impatient at a
rate that, if kept constant at its initial level of of $10 per annum, would empty
the Patient account in 10 years. Because the rate of outflow declines as the
Patient account declines, the money in the account decays towards zero but
never quite reaches it.

Flows ↓ / Stock Variables → Reserves Patient Impatient Safe
asset liability equity

Initial Conditions 120 −100 0 −20
Patient lends to Impatient Lend −Lend

Patient

Impatient

Patient

�L

Lend

x 10

0 1 2 3 4

x 10

0

2

4

6

8

10

x 10

0 1 2 3 4

x 1

0

2

4

6

8

10

Godley0

Lend

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

Many more actions need to be added to this model to complete it. For a
start, Impatient should be paying interest to Patient on the amount lent. Add
an additional row to the Godley Table by clicking on the ‘+’ key next to “Patient
lends to Impatient” to create a blank row:

3.2. BASIC BANKING MODEL 49

Flows ↓ / Stock Variables → Reserves Patient Impatient Safe
asset liability equity

Initial Conditions 120 −100 0 −20
Patient lends to Impatient Lend −Lend

Then label this flow “Impatient pays interest” and make the entry “Interest”
into the cell for Impatient on that row. Make the matching entry “-Interest” in
the cell for Patient. The flow “Interest” now appears on the input side of the
Godley Table on the Canvas:

Flows ↓ / Stock Variables → Reserves Patient Impatient Safe
asset liability equity

Initial Conditions 120 −100 0 −20
Patient lends to Impatient Lend −Lend

Impatient pays interest −Interest Interest

Interest now has to be defined. It will be the amount in Impatient’s account
(since this began at zero) multiplied by the rate of interest charged by Patient:

rL

Impatient

Interest

With that definition, the dynamics of the model change: rather than the
Patient account falling to zero and Impatient rising to 100, the two accounts
stabilize once the outflow of new loans by Patient equals the inflow of interest
payments by Impatient:

50 CHAPTER 3. TUTORIAL

Patient

Impatient

Patient

�L

Lend

Impatient

rL

x 10

0 1 2 3 4 5 6 7 8

x 10

0

2

4

6

8

10

x 10

0 1 2 3 4 5 6 7 8

x 1

3

4

5

6

7

8

9

10

Godley0

Lend

Interest

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

Though it stabilizes, this is is still a very incomplete model: neither Patient
nor Impatient are doing anything with the money apart from lending it and
paying interest. I am now going to assume that Impatient is borrowing the
money in order to hire workers to work at a factory and produce output for
sale. So we now need another account called Workers, and a payment from
Impatient to Workers called Wage:

Flows ↓ / Stock Variables → Reserves Patient Impatient Workers Safe
asset liability equity

Initial Conditions 120 −100 0 −0 −20
Patient lends to Impatient Lend −Lend
Impatient pays interest −Interest Interest
Impatient pays Workers Wage −Wage

In a more complex model, the Wage bill could be related to the current rate
times the number of workers in employment. In this simple model I will regard
the wage as a function of the amount of money in Impatient’s account turning
over several times a year in the payment of wages. Using a time constant, I
will assume that the amount in Impatient’s account turns over 3 times a year
paying wages, so that the time constant τT is 1/3rd of a year:

3.2. BASIC BANKING MODEL 51

Impatient
�T

The dynamics of this incomplete model are very different again: very little
money turns up in the Impatient account, and all of the money ends up in the
Workers account. However economic activity also ceases as both lending and
the flow of wages falls towards zero:

Patient

Impatient

Patient
�L

Lend

Impatient
rL

Impatient
�T

Wage

Workers

x 1

0 2 4 6 8 10 12

x 10

0

2

4

6

8

10

x 1

0 2 4 6 8 10 12

x 1

2

4

6

8

10

Godley0

Lend

Interest

Wage

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

W
o

rk
e

rs

S
a

fe

This is because wages are being paid to workers, but they are doing nothing
with it. So we need to include consumption by workers–and by Patient as well.
Here the reason time constants are useful may be more obvious. The time
constant for consumption by Workers is given the very low value of 0.05—or
1/20th of a year—which indicates that if their initial rate of consumption was
maintained without any wage income, they would reduce their bank balances
to zero in 1/20th of a year or about 2.5 weeks.

52 CHAPTER 3. TUTORIAL

Chapter 4

Reference

4.1 Operations

add + Add multiple numbers together. The input ports allow multiple wires,
which are all summed. If an input port is unwired, it is equivalent to
setting it to zero.

subtract − Subtract two numbers. The input ports allow multiple wires,
which are summed prior to the subtraction being carried out. If an in-
put port is unwired, it is equivalent to setting it to zero. Note the small
‘+’ and ‘−’ signs on the input ports indicating which terms are added or
subtracted from the result.

multiply × Multiply numbers with each other. The input ports allow multiple
wires, which are all multiplied together. If an input port is unwired, it is
equivalent to setting it to one.

divide ÷ Divide a number by another. The input ports allow multiple wires,
which are multiplied together prior to the division being carried out. If
an input port is unwired, it is equivalent to setting it to one. Note the
small ‘×’ and ‘÷’ signs indicating which port refers to the numerator and
which the denominator.

log Take the logarithm of the x input port, to base b. The base b needs to be
specified — if the natural logarithm is desired (b = e), use the ln operator
instead.

pow xy Raise one number to the power of another. The ports are labelled x
and y, referring the the formula xy.

lt < Returns 0 or 1, depending on whether x < y is true or false.

le ≤ Returns 0 or 1, depending on whether x ≤ y is true or false.

eq = Returns 0 or 1, depending on whether x = y is true or false.

53

54 CHAPTER 4. REFERENCE

min Returns the minimum of x and y.

max Returns the maximum of x and y.

and ∧ Logical and of x and y, where x ≤ 0.5 means false, and x > 0.5 means
true. The output is 1 or 0, depending on the result being true or false
respectively.

or ∨ Logical or of x and y, where x ≤ 0.5 means false, and x > 0.5 means
true. The output is 1 or 0, depending on the result being true or false
respectively.

not ¬ The output is 1 or 0, depending on whether x ≤ 0.5 is true or false
respectively.

time t Returns the current value of system time.

copy This just copies its input to its output, which is redundant on wiring
diagrams, but is needed for internal purposes.

integrate ∫dt Creates an integration (or stock) variable. Editable attributes
include the variable’s name and its initial value at t = 0.

differentiate d
dt Symbolically differentiates its input.

data A data interpolation widget. Currently, the data must be imported
from a file containing two values on each line, eg:

0.1 0.3
0.5 0.7
0.9 1

If the input is less than the minimum key value (0.1 here), then the op-
eration outputs the corresponding value (0.3). Similarly if the input is
greater than the maximum (0.9), the corresponding value (1) is output. If
it lies in between two keys (eg 0.2), the the output is linearly interpolated
(0.4).

More formally, a data block is an empirical function, based on a table
of pairs of values (xi, yi, i = 1 . . . n, xi+1 > xi) read in from a file. The
function’s output is linearly interpolated from the data, ie:

f(x) =


y1 x < x1
yn x ≥ xn

yi(xi+1−x)+yi+1(x−xi)
xi+1−xi

xi ≤ x < xi+1

sqrt
√

Square root of the input

exp Exponential of the input

ln Natural logarithm

4.2. SWITCH 55

sin sine function

cos cosine function

tan tangent function

asin Arc sine, inverse of sine

acos Arc cosine, inverse of cosine

atan Arc tangent, inverse of tangent

sinh hyperbolic sine function ex−e−x

2

cosh hyperbolic cosine function ex+e−x

2

tanh hyperbolic tangent function ex−e−x

ex+e−x

abs |x| absolute value function

floor bxc The greatest integer less than or equal to x.

frac Fractional part of x, ie x− bxc.

4.2 Switch

A switch block (also known as a case block, or select in the Fortran world)
is a way of selecting from a range of alternatives according to the value of the
input, effectively defining a piecewise function.

1

2.5

-1

t

x 1

0 1 2 3 4 5 6

x 1

-1

0

1

2

An example switch block with 3 cases

56 CHAPTER 4. REFERENCE

The default switch has two cases, and can be used to implement an if/then/else
construct. However, because the two cases are 0 and 1, or false and true, a two
case switch statement will naturally appear “upside down” to how you might
think of an if statement. In other words, it looks like:

if not condition then

. . . else

. . .
You can add or remove cases through the context menu.

4.3 Variables

Variables represent values in a calculation, and come in a number of varieties:

Constants represent an explicit numerical value, and do not have a name.
Their graphical representation shows the actual value of the constant.

Parameters are named constants. All instances of a given name represent the
same value, as with all other named variables, so changing the value of one
parameter, either through its edit menu, or through a slider, will affect all
the others of that name.

Flow variables have an input port that defines how the value is to be cal-
culated. Only one flow variable of a given name can have its input port
connected, as they all refer to the same quantity. If no input ports are
connected, then flow variables act just like parameters.

Integral variables represent the result of integrating its input over time by
means of the differential equation solver. The integrand is represented by
the input to an integral operator that is attached to the integral variable.

Stock variables are the columns of Godley tables, and represent the integral
over time of the sum of the flow variables making up the column.

Variables may be converted between types in the variable edit menu, avail-
able from the context menu, subject to certain rules. For example, a variable
whose input is wired anywhere on the canvas cannot be changed from “flow”.
Stock variables need to be defined in a Godley table, and so on.

4.3.1 Variable names

Variable names uniquely identify variables. Multiple icons on the canvas may
have the same name — they all refer to the same variable. Variable names have
scope, which is either global (indicated by a leading ‘:’, or the numerical id of
a group. You may select a variable name from a drop down list in the “name”
combo box, which makes for an easier way of selecting exactly which variable
you want.

4.4. WIRES 57

4.3.2 Initial conditions

Variable initial conditions can be defined through the “init value” field of the
variable edit menu, or in the case of Godley table stock variables, through the
initial condition row of the Godley table. An initial value can be a simple
number, or it can be a multiple of another named variable (or parameter). In
case of symbolic definitions, it would be possible to set up a circular reference
where the initial value of variable A is defined in terms of the initial value of
variable B, which in turn depends on the intial value of A. Such a pathological
situation is detected when the system is reset.

4.3.3 Sliders

From the context menu, one can select a slider to be attached to a variable,
which is a GUI “knob” allowing one to control a variable’s initial value, or the
value of a parameter or constant. Adjusting the slider of an integral (or stock)
variable while the system is running actually adjusts the present value of the
variable.

Slider parameters are specified in the edit menu: max, min and step size. A
relative slider means that the step size is expressed as a fraction of max-min.

4.4 Wires

Wire represent the flow of values from one operation to the next. To add a wire
to the canvas, click on the output port of an operation or variable (right hand
side of the icon in its initial unrotated orientation), and then drag it towards
an input port (on the left hand side of an unrotated icon). You can’t connect
an operator to itself (that would be a loop, which is not allowed, unless passing
through an integral), nor can an input port have more than one wire attached,
with the exception of +/− and ×/÷, where the multiple wires are summed or
multiplied, respectively, and similarly max/min.

Wires can be bent by dragging the blue dots (“handles”). Every time a
handle is dragged out of a straight line with its neighbours, new handles appear
on either side. Handles can be removed by double-clicking on them.

4.5 Groups

Grouping gives the capability to create reusable modules, or subroutines that
can dramatically simplify more complicated systems. Groups may be created
in the following ways:

• by lassoing a number of items to select them, then selecting “group” from
the canvas context menu, or the edit menu.

• by pasting the selection. You may “ungroup” the group from the context
menu if you don’t desire the result of the paste to be a group.

58 CHAPTER 4. REFERENCE

• by copying another group

• by inserting a Minsky file as a group

Zooming in on a group allows you see and edit its contents. Groups may
be nested heirarchically, which gives an excellent way of zooming in to see the
detail of a model, or zooming out to get an overview of it.

Around the edges of a group are input or output variables, which allow one
to parameterise the group. One can drag a variable and dock it in the I/O area
to create a new input or output for the group.

When creating a group, or dragging a variable or operation into or out of a
group, if a wire ends up crossing the group boundary, a new temporary variable
is added as an I/O variable.

Variable names within groups are locally scoped to that group. That means
that a variable of the same name outside the group refers to a different entity
completely. One can refer to variables outside the current scope by qualifying the
variable name. The simplest qualification to understand is global scope, which
is specified by prepending a ‘:’ to the variable name. To refer to a variable
in another group, the notation is <group id>:<name>, where <group id> is
the integer id of the group in question. An alternative equivalent notation
is <description>[<group id>]:<name>, where <description> is the textual
name given to the group. The description string is ignored by Minsky on input—
only the group id is important, but this mechanism makes it easier to see what
variable belongs to which group in the drop down lists in the name field. Please
try to keep the group names distinctive in their first five characters, as Minsky
will truncate the descriptive string to fit in the drop down menu.

A group can also be exported to a file from the context menu. This allows
you to build up a library of building blocks. There is a github project “minsky-
models” allowing people to publish their building blocks and models for others
to use. In the future, we hope to integrate Minsky with this github repository,
allowing even more seamless sharing of models.

4.6 Plot widget

A plot widget embeds a dynamic plot into the canvas. Around the outside of
the plot are a number of input ports that can be wired.

4.6. PLOT WIDGET 59

x 0.1

-10 -8 -6 -4 -2 0 2 4 6 8

x 0.1

-8

-6

-4

-2

0

2

4

6

8

left hand edge Up to 4 quantities can be plotted on the graph simultaneously,
with line colour given by the colour of the input port

right hand edge Another 4 quantities can be added to the plot. These are
shown on a different scale to the left hand inputs, allowing very different
magnitudes to be compared on the one plot.

bottom edge Quantities controlling the x-coordinates of the curves. The
colours match up with the colour of the pen being controlled.

3

t
sin

cos

x 0.1

-10 -5 0 5 10 15

x 0.1

-10

-5

0

5

10

If only one bottom port is connected, then that controls all pens simulta-
neously, and if no ports are connected, then the simulation time is used
to provide the x coordinates

corners Corner ports control the scale. You can wire up variables controlling
minimum and maximum of the x, y and right hand y axes. If left unwired,

60 CHAPTER 4. REFERENCE

the scales are determined automatically from the data. This can be used,
for example, to implement a sliding window graph

5

1

t sin

t

x 1

35 36 37 38 39 40

x 0.1

-10

-5

0

5

10

4.7 Note Widget

Notes allow arbitrary text to be placed on the canvas for explanatory purposes.
Anything that can be entered on the keyboard can be placed here, including
unicode characters, but LaTeX formatting is not currently supported. A note
widget, like all canvas items, allow short additional tooltips to be specified. It
is also possible to annotate an ordinary block with some text that is visible
through the edit menu, or as a tooltip.

4.8 Godley Tables

Godley tables describes sets of financial flows from the point of view of a par-
ticular economic agent, such as a bank. The columns of the table represent
accounts (possibly aggregated), which are treated as integration variables by
the system. In “double entry” mode, accounts may be assets, liabilities or equi-
ties. Assets may appear as liabilities in another agent’s Godley table, and vice
versa, with the sense of the financial flows treated oppositely (a positive flow
increasing the asset of one entity will appear as a negative flow, increasing the

4.9. CONTEXT MENU 61

value of a liability). Instead of positive or negative flows, one can optionally use
CR and DR prefixes, as specified in the options panel.

The first row specifies the stock variables, after which follow the flow rows.
Usually, the row marked “Initial Conditions” comes next, but may be placed
in any position. These specify the initial conditions of the stock variables, and
may refer to a multiple of another variable, just like the initial condition field,
or just be a numerical value.

Finally come the flows. The first column is a simple textual label (the phrase
“Initial Conditions”, regardless of capitalisation, is a reserved phrase for setting
stock variable initial conditions) identifying the flow. The flows themselves
are written as a numerical multipler times a flow variable. Unscoped variables
are treated as global at present, however, in the future, Godley tables will be
allowed to be part of groups, which will then define the context of the unqualified
variable names.

The final column displays the row sum. A correctly functioning Godley table
should have each row sum to zero — this ensures everything is accounted for,
with no hidden sinks or sources.

4.9 Context Menu

All canvas items have a context menu, which allow a variety of operations to be
applied to the canvas item. Common context menu items are explained here:

Help bring up context specific help for the item

Description Attach an annotation to the item. This is only visible by selecting
the description item from the context menu, although whatever is set as
the “Short Description” will also appear as a tooltip whenever the mouse
hovers over the item.

Port values When running a simulation, you can drill down into the actual
values at the input and output ports of the variable or operation, which
is a useful aid for debugging models.

Edit set or query various attributes of an item. This function can also be
accessed by double clicking on the item. (Plot widgets behave slightly
differently).

Copy Creates a copy of an item, retaining the same attributes of the original.
This is very useful for creating copies of the same variable to reduce the
amount of overlapping wiring (aka “rats nest”) in a model.

Flip actually rotates an object through 180◦. You can specify aribtrary rota-
tions of objects through the edit menu.

Raise/Lower Raise and lower the canvas items relative to each other. You
may need to do this if a large item such as a Godley table or plot is

62 CHAPTER 4. REFERENCE

obscuring a wire, making it hard to access the wire’s context menu or
handles,

Browse object gives a low level drilldown of the internal C++ object this
canvas item represents. It is perhaps more of interest to developers.

Delete delete the object.

Item specific context menu items:

variables, parameters and constants

Slider add a slider control to a variable. This is most effective for con-
trolling parameters and constants, but can also be used to control
inputless variables.

Add integral attach an integration operation, and convert the variable
into an integral type

integrals

Copy Var copy just the integration variable, not the integration opera-
tion

Toggle Var Binding Normally, integrals are tightly bound to their vari-
ables. By toggling the binding, the integral icon can then be moved
independently of the variable it is bound to.

Godley tables

Open Godley Table opens a spreadsheet to allow financial flows defin-
ing the Godley table to be entered or modified.

Resize Godley Table allows the icon to be resized.

Edit/Copy var allows individual stock and flow variables to be copied
or edited.

Export to file export table contents as either CSV data, or as a LaTeX
table, for import into other software.

Groups

Zoom to Display Zoom the canvas sufficiently to see the contents of the
group.

Resize Resize the group icon on the canvas.

Save group as Save the group in it’s own Minsky file.

Flip contents Rotate each item within the group by 180◦

Ungroup Ungroup the group, leaving it’s contents as icons on the canvas.

contentBounds Draws a box on the canvas indicating the smallest bound-
ing box containing the group items.

4.10. CANVAS BACKGROUND 63

Plot Widgets

Expand By double-clicking, or selecting “Expand” from the context menu,
a popup window is created of the plot, which can be used examine
the plotting in more detail.

Resize Allows you to resize the plot icon on the canvas

Options Customize the plot by adding a title, axes labels and control
the number of axis ticks and grid lines on the detailed plot. You can
also add a legend, which is populated from the names of variables
attached to the plot.

4.10 Canvas background

The canvas is not simply an inert place for the canvas items to exist. There is
also a background context menu, giving access to the edit menu functionality
such as cut/copy/paste, and also keyboard entry.

The following keystrokes insert an operation
+ add
- subtract
* multiply
/ divide
^ pow
& integral
= Godley table
@ plot

% or # start a text comment, finish with return
Typing any other character, then return will insert an operation (if the name

matches), or otherwise a variable with that name.

	Introduction
	New to system dynamics?
	Experienced in system dynamics?

	Getting Started
	System requirements
	Getting help
	Components of the Program
	Menu
	Run Buttons
	Zoom buttons
	Speed slider
	Simulation time
	Wiring and Equations Tabs
	Design Icons
	Design Canvas
	Wires

	Working with Minsky
	Components in Minsky
	Inserting a model component
	Creating an equation
	Wiring components together
	Creating a banking model
	Defining account types

	Tutorial
	Basic System Dynamics model
	Basic Banking model
	Loanable Funds

	Reference
	Operations
	Switch
	Variables
	Variable names
	Initial conditions
	Sliders

	Wires
	Groups
	Plot widget
	Note Widget
	Godley Tables
	Context Menu
	Canvas background

