Chapter 1

Introduction

1.1 New to system dynamics?

Minsky is one of a family of “system dynamics” computer programs. These
programs allow a dynamic model to be constructed, not by writing mathematical
equations or numerous lines of computer code, but by laying out a model of a
system in a block diagram, which can then simulate the system. These programs
are now the main tool used by engineers to design complex products, ranging
from small electrical components right up to passenger jets.

Minsky adds another means to create the dynamic equations that are needed
to define monetary flows—the “Godley Table”—which is discussed in the next
section for users who are experienced in system dynamics. In this section, we’ll
give you a quick overview of the generic system dynamics approach to building
a model.

Though they differ in appearance, they all work the same way: variables in
a set of equations are linked by wires to mathematical operators. What would
otherwise be a long list of equations is converted into a block diagram, and
the block diagram makes the causal chain in the equations explicit and visually
obvious.

For example, say you wanted to define the rate of employment as depending
on output (GDP), labor productivity and population. Then you could define a
set of equations in a suitable program (like Mathcad):

GDP := 100
LaborProductivity = 1
Population := 100
Workers := GDP + LaborProductivity
EmpRate := Workers <+ Population
EmpRate = 1

2 CHAPTER 1. INTRODUCTION

Or you could define it using a block diagram, such as Minsky:

HaborProductjvi ty

For a simple algebraic equation like this, modern computer algebra programs
like Mathcad are just as good as a block diagram programs like Vissim or Minsky.
But the visual metaphor excels when you want to describe a complex causal
chain.

These causal chains always involve a relationship between stocks and flows.
Economists normally model stocks and flows by adding an increment to a stock.
For example, the level of capital K is defined as a difference equation, where
capital in year ¢ is shown as being capital in year ¢ — 1 plus the investment that
took place that year:

Ki=K; 1 +1;_

The problem with this approach is that in reality, capital is accumulating
on a daily, or even hourly, basis. It is better to model stock as continuous
quantities and for this reason, all stocks and flows in Minsky are handled instead
as integral equations. The amount of capital at time ¢ is shown as the integral
of net investment between time 0 and today:

K(t):/o I(s)ds

However, rather than being shown as an equation, the relationship is shown

as a diagram:

The advantages of the block diagram representation of dynamic equations
over a list of equations are:

e They make the causal relationships in a complex model obvious. It takes
a specialized mind to be able to see the causal relations in a large set of
mathematical equations; the same equations laid out as diagrams can be
read by anyone who can read a stock and flow diagram—and that’s most
of us;

1.2. EXPERIENCED IN SYSTEM DYNAMICS? 3

e The block diagram paradigm makes it possible to store components of a
complex block diagram in a group. For example, the fuel delivery system
in a car can be treated as one group, the engine as another, the exhaust
as yet another. This reduces visual complexity and also makes it possible
for different components of a complex model to be designed by different
groups and then “wired together” at a later stage.

For example, here’s a model of a 4 cylinder engine car—one of the simple
examples distributed with the program Vissim:

Shaft Speed =

::mmm.

[100 [\}—H Position [mm] [>
—

= 120ff cyl 1 OFF
= 2-0ff cyl 2 OFF
= 320fF cyl 3 OFF g
ST 4Cylinder Engine B
settines]
&1 lot = [@ =]
Blepm [>——P

[Fuel Index [mm] [>»

[Torque [iNm] >

Power_Calc [10 kW] |~

Programs like Vissim and Simulink have been in existence for almost 2
decades, and they are now mature products that provide everything their user-
base of engineers want for modeling and analyzing complex dynamic systems.
[So why has Minsky been developed?|

1.2 Experienced in system dynamics?

As an experienced system dynamics user (or if you've just read |“New to syste
dynamics?”|), what you need to know is what Minsky provides that other system
dynamics programs don’t. That boils down to one feature: The Godley Table.

It enables a dynamic model of financial flows to be derived from a table that is
very similar to the accountant’s double-entry bookkeeping table.

The dynamics in financial flows could be modeled using the block diagram
paradigm. But it would also be very, very easy to make a mistake modeling
financial flows in such a system, for one simple reason: every financial flow
needs to be entered at least twice in a system—once as a source, and once as a
sink.

4 CHAPTER 1. INTRODUCTION

For example, if you go shopping and buy a new computer with your credit
card, you increase your debt to a bank and simultaneously increase the deposit
account of the retailer from whom you buy the computer. The two system
states in this model—your credit card (“BuyerCredit”) and the retailer’s deposit
account (“SellerDeposit”)—therefore have to have the same entry (let’s call this
“Card”) made into them. Such a transaction would look like this:

ig>—{BuyerCredi t>

ard

8> SeIIerDeposjt>

That would work, but there’s nothing in the program that warns you if
you make a mistake like, for example, wiring up the BuyerCredit entry, but
forgetting the SellerDeposit one:

ig>—{BuyerCredi t)

ard

l@— SellerDeposi t>

Or, perhaps, wiring up both blocks, but giving one the wrong sign:

BuyerCredi t>

SellerDeposi t>

In a very complex model, you might make a mistake like one of the above,
run the simulation and get nonsense results, and yet be unable to locate your
mistake.

Minsky avoids this problem by using the paradigm that accountants devel-
oped half a millennium ago to keep financial accounts accurately: double-entry
bookkeeping. Here is the same model in Minsky:

Flows | / Stock Variables — | BuyerCredit | Seller Deposit | Row Sum
asset liability

Initial Conditions 0 0 0
Buyer Accesses Credit Card Card 0

1.2. EXPERIENCED IN SYSTEM DYNAMICS? 5

This is an inherently better way to generate a dynamic model of financial
flows, for at least two reasons:

e All financial transactions are flows between entities. The tabular layout
captures this in a very natural way: each row shows where a flow origi-
nates, and where it ends up

e The program adopts the accounting practice of double-entry bookkeeping,
in which entries on each row balance to zero according to the accounting
equation (Assets=Liabilities+Equities). The source is shown as a positive
value increasing the value of assets, the sink is a positive value increas-
ing a corresponding liability. If you don’t ensure that each flow starts
somewhere and ends somewhere—say you make the same mistake as in
the block diagram examples above, then the program will identify your
mistake.

If you forget to enter the recipient in this transaction, then the Row Sum
identifies your mistake by showing that the row sums to “Card” rather than
zero:

Flows | / Stock Variables — | BuyerCredit | Seller Deposit | Row Sum

asset liability
Initial Conditions 0 0 0
Buyer Accesses Credit Card Card

And it also identifies if you give the wrong sign to one entry:

Flows | / Stock Variables — | BuyerCredit | Seller Deposit | Row Sum

asset liability
Initial Conditions 0 0 0
Buyer Accesses Credit Card —Card 2Card

Minsky thus adds an element to the system dynamics toolkit which is funda-
mental for modeling the monetary flows that are an intrinsic aspect of a market
economy. Future releases will dramatically extend this capability.

CHAPTER 1. INTRODUCTION

Chapter 2

Getting Started

2.1 System requirements
Minsky is an open source program available for Windows, Mac OS X, and var-
ious Linux distributions, as well as compilable on any suitable Posix compliant

system. Go to our [SourceForge pagel to download the version you need. Linux
packages are available from the OpenSUSE build service.

2.2 Getting help

Press the F1 key, or select “help” from the context menu. Help is context-
sensitive.

2.3 Components of the Program
There are 6 components to the Minsky interface:

1. The menus.

File Edit Insert Options Runge Kutta Help

2. The Run buttons

3. The simulation speed slider

Simulation Speed

slow fast

https://minsky.sourceforge.io
https://build.opensuse.org/package/show/home:hpcoder1/minsky

8 CHAPTER 2. GETTING STARTED

4. The Zoom buttons
ala @|

5. The Wiring and Equation tabs

wInng equations

6. The design icons

Wiring equations

L] coms 22 B B B] | B E{ B B o] | |] |]]
B EEEEEEEEEEI R

7. And finally the Design Canvas—the large drawing area beneath the buttons
and icons.

File Edit Insert Options RungeKutta Help

ﬂﬂms\cw’%hmﬂﬂﬁ t0ALD

wiring] equations 1 —

i) = | [B[(] B B B B B B B [] > B
BRI R ol ol B B Bl B B B P B P Bl B 8 | [=

2.3.1 Menu

File Edit Insert Options Runge Kutta Help
The menu controls the basic functions of saving and loading files, default
settings for the program, etc. These will alter as the program is developed; the
current menu items (as at the August 2016 Cantillon release) are:

2.3. COMPONENTS OF THE PROGRAM 9

File

About Minsky Tells you the version of Minsky that you are using.

New System Clear the design canvas.

Open Open an existing Minsky file (Minsky files have the suffix of “mky”).

Recent Files Provides a shortcut to some of your previously opened Minsky
files.

Library Opens a repository of models for the Minsky simulation system.
Save Save the current file.
Save As Save the current file under a new name.

Insert File as Group Insert a Minsky file directly into the current model as
a [group

Export Canvas Export the current canvas into *svg, *pdf, *eps, *tex, or *m
format. If using LaTeX (*tex), produce the set of equations that define
the current system for use in documenting the model, for use in LaTeX
compatible typesetting systems. If your LaTeX implemention doesn’t sup-
port breqn, untick the [wrap long equations option] which can be found in
the preferences panel under the options menu. If using a MatLab function
this can be used to simulate the system in a MatLab compatible system,
such as MatLaHT or Octavd?l

Log simulation Outputs the results of the integration variables into a CSV
data file for later use in spreadsheets or plotting applications.

Recording Record the states of a model as it is being built for later replay.
This is useful for demonstrating how to build a model, but bear in mind
that recorded logs are not, in general, portable between versions of Minsky.

Replay recording Replay a recording of model states.

Quit Exit the program. Minsky will check to see whether you have saved your
changes. If you have, you will exit the program; if not, you will get a
reminder to save your changes.

Debugging use Items under the line are intended for developer use, and will
not be documented here. Redraw may be useful if the screen gets messed
up because of a bug.

Thttps://en.wikipedia.org/wiki/MATLAB
2http://www.gnu.org/software/octave/

https://en.wikipedia.org/wiki/MATLAB
http://www.gnu.org/software/octave/

10 CHAPTER 2. GETTING STARTED

Edit

e Undo and Redo allow you to step back and forward in your editing history.
If you step back a few steps, and then edit the model, all subsequent model
states will be erased from the history.

e Cut/copy/paste. Selecting, or lassoing a region of the canvas will select a
group of icons, which will be shaded to indicate the selected items. Wires
joining two selected items will also be selected. Note that, compatible with
X-windows, selecting automatically performs a copy, so the copy operation
is strictly redundant, but provided for users familiar with systems where
an explicit copy request is required. Cut deletes the selected items. Paste
will paste the items in the clipboard as afgroup|into the current model. At
the time of writing, copy-pasting between different instances of Minsky,
or into other applications, may not work on certain systems. Pasting the
clipboard into a text-based application will be a Minsky schema XML
document.

PhillipsSlope PhillipsSlope

e Create a using the contents of the selection. Groups allow you to
organise more complicated systems specification into higher level modules
that make the overall system more comprehensible.

Insert

This menu contains a set of jmathematical operator blocks|for placement on the
Canvas. You can get the same effect by clicking on the Design Icons. Also
present are entries for [Godley table items| and [Plots|

Options
The options menu allows you to customise aspects of Minsky.

Preferences

e Godley table show values. When ticked, the values of flow variables
are displayed in the Godley table whilst a simulation is running. This
will tend to slow down the simulation somewhat.

e Godley table output style — whether +/— or DR/CR (debit/credit)
indicators are used.

2.3.

COMPONENTS OF THE PROGRAM 11

e Number of recent files to display — affects the menu.

o Wrap long equations in LaTeX export. If ticked, use the breqn pack-
age to produce nicer looking automatically line-wrapped formulae.
Because not all LaTeX implementations are guaranteed to support
breqn, untick this option if you find difficulty.

e enable/disable the

Background colour — select a colour from which a colour scheme is com-

puted.

Runge Kutta

Help

Controls aspect of the adaptive Runge-Kutta equation solver, which trade
off performance and accuracy of the model.

Note a first order explicit solver is the classic Jacobi method, which is the
fastest, but least accurate solver.

The algorithm is adaptive, so the step size will vary according to how stiff
the system of equations is.

Specifying a minimum step size prevents the system from stalling, at the
expense of accuracy when the step size reaches that minimum.

Specifying a maximum step size is useful to ensure one has sufficient data
points for smooth plots.

An iteration is the time between updates to plots, increasing the number
of solver steps per iteration decreases the overhead involved in updating
the display, at the expense of smoothness of the plots. Screen refresh is the
period between screen updates, in ms. If an iteration takes less than this
time, the screen refresh is postponed until the time has expired. 100ms
is fast enough for a smooth animation of the simulation - increasing this
value will improve simulation performance at the cost of a jerky animation
of the simulation.

Start time is the value of the system ¢ variable when the system is reset.
Run until time can be used to pause the simulation ince t reaches a certain

value. Setting this to “Inf” causes the simulation to run indefinitely, or
until some arithmetic error occurs.

Provides an in-program link to this manual.

12 CHAPTER 2. GETTING STARTED

2.3.2 Record/Replay Buttons

®©Chr m)

These buttons control the recording / replay mode of Minsky. You can
record your interactions with Minsky, and replay those interactions for demon-
stration/presentation purposes.

1. Record a session of building/modifying a model. Note that replaying a
recorded session always starts from a blank canvas, so if you're recording
the modification of a model, ensure that the first thing recorded is to load
the model being modified. This button is a toggle button, so clicking it
again finishes the session, and closes the file.

2. Simulate/Replay button. Pressing this button changes Minsky into re-
play mode, and asks for a recording file. You may use the run buttons
(run/pause,stop and step), as well as the speed slider, to control the re-
play. This button is a toggle button, so clicking it again returns Minsky
back to the default simulation mode.

2.3.3 Run Buttons

AlLJlJ

The Run buttons respectively:

1. Start a simulation—when started the button changes to a pause icon, al-

2. Stop a simulation and reset the simulation time to zero

lowing you to pause the simulation

3. Step through the simulation one iteration at a time.

2.3.4 Speed slider

Simulation Speed

slow fast

The speed slider controls the rate at which a model is simulated. The default
speed is the maximum speed your system can support, but you can slow this
down to more closely observe dynamics at crucial points in a simulation.

2.3. COMPONENTS OF THE PROGRAM 13

2.3.5 Zoom buttons

QA @

The Zoom buttons zoom in and out on the wiring canvas. The same func-
tionality is accessed via the mouse scroll wheel. The reset zoom button @
resets the zoom level to 1, and also recentres the canvas. It can also be used to
recentre the equation view.

2.3.6 Simulation time

In the right hand top corner is a textual display of the current simulation time
t, and the current (adaptive) difference between iterations At.

2.3.7 Wiring and Equations Tabs

wInng equations

This allows you to switch between the visual block diagram wiring view and
the more mathematical equations view.

2.3.8 Design Icons

Wiring equations

o coms o 2] B> B o] [B B> B> E|] | B] B | [
EEEEEEEEEEEEEEEEEI

These are the “nuts and bolts” of any system dynamics program. The num-
ber of icons will grow over time, but the key ones are implemented now:

Godley Table T . This is the fundamental element of Minsky that is not
found (yet) in any other system dynamics program.

Clicking on it and placing the resulting Bank Icon on the Canvas enters a
Godley table into your model:

14

CHAPTER 2. GETTING STARTED

Double-click on the Bank Icon (or right-click and choose “Open Godley
Table” from the context menu) and you get a double-entry bookkeeping
table we call a Godley Table, which looks like the following onscreen:

Asset Liability Equity

PPl FEFP] FEFI

[Flows ¢ / Stock vars ~ | v M v[a-L-§
FE] ‘Initial Conditions ‘ ‘ ‘ HO ‘

Use this table to enter the bank accounts and financial flows in your model.
We discuss this later in the [Tutorial (Monetary)}

Variable . This creates an entity whose value changes as a function of time

and its relationship with other entities in your model. Click on it and a
variable definition window will appear:

Create Variable

Name|| J{l
Typelflow ﬂ
Value
Rotation
Short description

Detailed description
Slider Bounds: Max
Slider Bounds: Min
Slider Step Size

OK Cancel

The only essential step here is providing a name for the Variable. You
can also enter a value for it (and a rotation in degrees), but these can be
omitted. In a dynamic model, the value will be generated by the model
itself, provided its input is wired.

When you click on OK (or press Enter), the newly named variable will
appear in the top left hand corner of the Canvas. Move the mouse cursor
to where you want to place the variable on the Canvas, click, and it will
be placed in that location.

Constant creates an entity whose value is unaffected by the simulation or

other entities in the model. Click on it and a constant definition window
will appear:

2.3. COMPONENTS OF THE PROGRAM 15

Create Constant

Name ﬂ
Type|constant Jl
Value
Rotation
Short description

Detailed description
Slider Bounds: Max
Slider Bounds: Min

Slider Step Size

0K Cancel

The only essential element here is its value. You can also specify its
rotation on the Canvas in degrees. This lets you vary a parameter while
a simulation is running—which is useful if you wish to explore a range of
policy options while a model is running.

A constant is just a type of variable, which also include parameters (named
constants), flow variables, stock variables and integration variables. In
fact there is no real conceptual difference between creating a constant or
creating a variable, as you can switch the type using the type field.

Parameter Like the variable and constant button, this creates a variable
defaulting to the parameter type. Parameters differ from flow variables in
not having an input port, and differ from constants in having a name and
being controllable by a slider during simulation.

Time > embeds a reference to the simulation time on the Canvas. This is not
necessary in most simulations, but can be useful if you want to make a
time-dependent process explicit, or control the appearance of a graph.

For example, by default a graph displays the simulation time on the hor-
izontal axis, so that cycles get compressed as a simulation runs for a
substantial period:

16 CHAPTER 2. GETTING STARTED

\xﬂ.

Pese == NI)T
>Emp10ymentRate>’>> \ I

>

4\

‘[ml | |

»

—e
et
et

I L

L A AW

If a Time block is added to the marker for the x-axis range, you can control
the number of years that are displayed. This graph is set up to show a
ten year range of the model only:

=

S

Integration P . This inserts a variable whose value depends on the integral of
other variables in the system. This is the essential element for defining a
dynamic model. Click on it and the following entity will appear at the top
left hand side of the canvas (and move with your mouse until you click to
place it somewhere:

2.3.

COMPONENTS OF THE PROGRAM 17

-

“int1” is just a placeholder for the integration variable, and the first thing
you should do after creating one is give it a name. Double-click on the
“int1”, or right click and choose Edit. This will bring up the following
menu:

int1

Name||nt1
Initial Value
Rotation |0

relative

0K Cancel

Change the name to something appropriate, and give it an initial value.
For example, if you were building a model that included America’s popu-
lation, you would enter the following:

int1

Name Population
Initial Value[319
Rotation |0

relative

oK Cancel

The integrated variable block would now look like this:

@—Population

To model population, you need to include a growth rate. According to
Wikipedia, the current US population growth rate is 0.97 percent per
annum. FExpressed as an equation, this says that the annual change in
population, divided by its current level, equals 0.0097:

1 d
— - | - Population(¢) | = 0.0097
Population(t) (dt opulation(t))

18 CHAPTER 2. GETTING STARTED

To express this as an integral equation, firstly we multiply both sides of
this equation by Population to get:

d
%Population(t) = 0.0097 - Population(t)

Then we integrate both sides to get an equation that estimates what the
population will be T years into the future as:

T
Population(7") = 315 + / 0.0097 - Population(t)dt
0

Here, 315 (million) equals the current population of the USA, the year zero
is today, and T is some number of years from today. The same equation
done as a block diagram looks like this:

>GrowthRate

WPopulation

Or you can make it look more like the mathematical equation by right-
clicking on “Population” and choosing “Copy Var”. Then you will get
another copy of the Population variable, and you can wire up the equation
this way:

>G_rowthRa te

@—Population

Population

Either method can be used. I prefer the latter because it’s neater, and it
emphasizes the link between the simple formula for a percentage rate of
change and a differential equation.

Derivative Operator This operator symbolically differentiates its input,
provided the input is differentiable. An error is generated if the input is
not differentiable.

2.3. COMPONENTS OF THE PROGRAM 19

Plus, Minus, Multiply and Divide blocks > B B B . These execute
the stated binary mathematical operations. Each input can take multiple
wires as well—so that to add five numbers together, for example you can
wire 1 input to one port on the Add block, and the other four to the other
port.

Min & Max Functions These take the minimum and maximum values, re-
spectively. These also allow multiple wires per input.

Power and Logarithm ?> and B These are binary operations (taking two
arguments). In the case of the power operation, the exponent is the top
port, and the argument to be raised to that exponent is the bottom port.
This is indicated by the z and y labels on the ports. In the case of
logarithm, the bottom port (labelled b) is the base of the logarithm.

Logical Operators < <, =, A V = (and, or, not) &>, B>, B [[> and
B> . These return 0 for false and 1 for true.

Other functions These are a fairly standard complement of mathematical
functions.

Data block B A data block interpolates a sequence of empirical values, which
may be generated outside of Minsky, and imported as a CSV file. This
effectively defines a piecewise linear function.

Plot widget ¥ Add to the canvas.

Switch = Add [a piecewise-defined function block|to the canvas. Also known
as a hybrid function.

Notes Add textual annotations

2.3.9 Design Canvas

The Design Canvas is where you develop your model. A model consists of a
number of blocks—variables, constants and mathematical operators—connected
by wires.

20 CHAPTER 2. GETTING STARTED

File Edit Insert Options Runge Kutta Help

ﬂﬂﬂsbw,%hgﬂﬂﬂ oato
wiring] equations | &
I o | [B> B P [e B> B B B Bl B [(] 5/ 2>/ B>
Bl B | o B Bl ol B 2 o B B P B B B8 [|

2.3.10 The Panopticon

On the top right hand corner of the design canvas is a small recessed panel
showing a miniature version of the entire model, with the current view port
shown. This feature aids navigation around more complex models. This fea-
ture may optionally be disabled through the preferences panel, as it may cause
unacceptable overheads for bigger models.

2.3.11 Wires

The wires in a model connect blocks together to define equations. For example,
to write an equation for 100/33, you would place a on the canvas, and give
it the value of 100:

Create Constant

Name

[E[E]

Type [constant

Value|100|
Rotation
Short description
Detailed description
Slider Bounds: Max
Slider Bounds: Min
Slider Step Size

0K Cancel

2.4. WORKING WITH MINSKY 21

Then do the same for 33, and place a divide block on the canvas:

100)

Then click on the right hand edge of and drag to extend the wire to the
numerator (x) port of the divide operation.

100

Finally, add the other wire.

100

2.4 Working with Minsky

>

2.4.1 Components in Minsky

There are a number of types of components in Minsky
1. Mathematical operators such as plus (+), minus (-)

2. Constants (or parameters, which are named constants) which are given a
value by the user

3. Variables whose values are calculated by the program during a simulation
and depend on the values of constants and other variables; and

4. Godley Tables, which define both financial accounts and the flows between
them. In the language of stock and flow modelling, the columns of a
Godley table are the stocks, which are computed by integrating over a
linear combination of flow variables.

22 CHAPTER 2. GETTING STARTED

5. Integrals — represent a variable computed by integrating a function for-
ward in time.

6. Groups, which allow components to be grouped into modules that can be
used to construct more complex models.

2.4.2 Inserting a model component

There are three ways to insert a component of a model onto the Canvas:

1. Click on the desired Icon on the Icon Palette, drag the block onto the
Canvas and release the mouse where you want to insert it

Wiring equations

Ll | onst 3] B B>] >] B B B E>{]]]] B |
B EEEEEEEEEEI IR

2. Choose Insert from the menu and select the desired block there

B Minsly:
File Edit Insert Options R
Godley Table
’ | . | Variable
wiring equ constant
add
_MIL” va subtract
multiphy
EEI_ divide
log
pow
It
le
=q
min
max
and
or
not
time
copy
integrate
differentiate
data
sqrt
e
In
sin
cos
tan
asin
acos
atan
sinh
cosh
tanh
abs
Kl Plot

2.4. WORKING WITH MINSKY 23

3. Right-click on an existing block and choose copy. Then place the copy
where you want it on the palette.

Valal en
Edit

Copy
Flip

Browse chject
Delete

2.4.3 Creating an equation

Equations are entered in Minsky graphically. Mathematical operations like ad-
dition, multiplication and subtraction are performed by wiring the inputs up to
the relevant mathematical block. The output of the block is then the result of
the equation.

For example, a simple equation like

100/3 = 33.3

is performed in Minsky by defining a constant block with a value of 100, defining
another with a value of 3, and wiring them up to a divide-by block. Then attach
the output of the divide block to a variable, and run the model by clicking on

x0.1

»

Answer

vI

dhl A A WALA

If you click on the equation tab, you will see that it is:

100
Answer = 3

24 CHAPTER 2. GETTING STARTED

Very complex equations—including dynamic elements like integral blocks
and Godley Tables—are designed by wiring up lots of components, with the
output of one being the input of the next. See the tutorial for examples.

2.4.4 Wiring components together

A model is constructed by wiring one component to another in a way that defines
an equation. Wires are drawn from the output port of one block to the input
port of another. Ports are circles on the blocks to which wires can be attached,
which can be seen when hovering the pointer over the block. Variables have an
input and an output port; constants and parameters only have an output port.
A mathematical operator has as many input ports as are needed to define the
operation.

To construct an equation, such as Fred - Wilma = Barney:

Click the mouse near the output port of one block and drag the cursor to the
input port of another while holding the mouse button down. An arrow extends
out from the output port. Release the mouse button near the required input
port of the operator. A connection will be made.

red

Wilma

The equation is completed by wiring up the other components in the same
way.

Barney

2.4.5 Creating a banking model
Creating a bank

The first step in creating a model with a banking sector is to click on the Godley
Table Icon in the Icon Palette, and place the block somewhere on the Canvas.

2.4. WORKING WITH MINSKY 25
Entering accounts

Double click or right click on the Godley table block to bring up the Godley
Table. The table is divided up into sections representing the different accounting
asset classes: Asset, Liability and Equity. Assets represent what you have to
hand at any point in time, and should always be the sum of liabilities and
equity. Liabilities represent amounts that are owed to other parties, and equity
the amount of capital owned. The column A-L-E represents the accounting
equation (Assets—Liabilities—Equity), and a properly formatted Godley table
adhering to double entry accounting conventions will have this column zero for
all rows.

When a Godley Table is first loaded, each accounting class has room for one
account (also known as a stock) to be defined. To create an additional accounts,
click on the ‘4’ button above the first account. One click then adds another
column in which an additional account can be defined. Note that the table will
delete excess blank accounts, so you should name them as you go. You can
chancge the asset class of an account by moving it into the appropriate sector
using the <— and — buttons, or by clicking and dragging the column variable
name (the first row of the column).

Asset Liability Equity

FF] FEFE] FEF]
‘Flows | / Stock Vars — V‘ v

\
FE] ‘Initial Conditions ‘ ‘ ‘ HO ‘

A column can be deleted by clicking on the ‘—” button above the column.

To define bank accounts in the system you enter a name into the row labeled
“Flows | / Stock Variables —”. For example, if you were going to define a bank-
ing sector that operated simply as an intermediary between “Patient” people
and “Impatient” people—as in the Neoclassical “Loanable Funds” model-you
might define the following accounts:

Asset Liability Equity
FFl__FFFPLFEFE] _FEF
‘Flows | / Stock Vars - ‘Reservesv ‘Patientv ImpatientV ‘Safe VHA-L-E‘
FE] |[Initial Conditions [lo 0 o [lo |

As you enter the accounts, they appear at the bottom of the Bank block on
the canvas:

26 CHAPTER 2. GETTING STARTED

" Godley0

¢
Y
-
()
(7]
[}
~

Entering flows between accounts

Flows between accounts are entered by typing text labels in the accounts in-
volved. The source label is entered as a simple name—for example, if Patient
is lending money to Impatient, the word “Lend” could be used to describe this
action. Firstly you need to create a row beneath the “Initial Conditions” row
(which records the amount of money in each account when the simulation be-
gins). You do this by clicking on the ‘4’ key on the Initial Conditions row. This
creates a blank row for recording a flow between accounts.

Asset Liability Equity

FFl FEFPIFEFR]L _FEF

Flows | / Stock Vars - |ReservesV|[PatientV|ImpatientV|Safe V|A-L-E
FET] Initial Conditions 0 0 0 0 0
FEIT] 0

The cell below “Initial Conditions” is used to give a verbal description of
what the flow is:

Asset Liability Equity
FFl__FFFP] FEFF]L_FEF
‘Flows | / Stock Vars - IReservesV |PatientV|ImpatientV||Safe V|A-L-E
|[Tnitial Conditions 0 0 0 0 0
Patient lends to Impatientl 0

The flows between accounts are then recorded in the relevant cells under-
neath the columns. Here we will start with putting the label “-Lend” into the
Patient column. It is negative, because Patient is lending to Impatient.

Asset Liability Equity
FFl _FEFPIFEFF] _FEF
Flows | / Stock Vars - IReservesV |PatientV|ImpatientV||Safe V|A-L-E
Initial Conditions 0 0 0 0 0
.= Patient lends to Impatient -Lend \Lend

Notice that the program shows that the Row Sum for this transaction is
currently “Lend”, when it should be zero to obey the double-entry bookkeeping
rule that all rows must balance. This is because a destination for “Lend” has not

2.4. WORKING WITH MINSKY 27

yet been specified. Please note that different asset class columns follow different
+ve and -ve rules, so an asset and a liability with the same value might need to
both be +ve or both -ve to sum to zero. The destination is Impatient’s account,
and to balance the row to zero this part of the transaction must be entered as
“Lend”:

Asset Liability Equity
FFl _FFEFFIFEFF] _FEF
Flows | / Stock Vars - IReservesV||PatientV | ImpatientV||Safe V|A-L-E
Initial Conditions 0 0 0 0 0
.= Patient lends to Impatient -Lend Lend 0

The accounting equation also applies to the Initial Conditions (the amount
of money in each of the accounts prior to the flows between accounts): the Initial
Conditions must balance. This requires that there are entries on the Asset side
of the Banking ledger that exactly match the sum of Liabilities and Equity:

Asset Liability Equity
FFl _FFEFFIFEFF] FEF
Flows | / Stock Vars - IReservesV||PatientV|ImpatientV||Safe V|A-L-E
Initial Conditions 120 100 0 20 0
.= Patient lends to Impatient -Lend Lend 0

As you enter flows, these appear on the left hand side of the bank block:

~ Godley0

end

]
1SS
o
Q
[
]
o

Defining flows

The entries in the Godley Table represent flows of money, which are denom-
inated in money units per unit of time. The relevant time dimension for an
economic simulation is a year (whereas in engineering applications, the relevant
time dimension is a second), so whatever you enter there represents a flow of
money per year.

You define the value of flows by attaching a constant or variable to the input
side of the flow into the bank as shown on the Canvas. For example, you could
assign Lend a value of 10 (which would represent a loan of $10 per year by
Patient to Impatient) by:

Create a constant with a value of 10, and attaching this to the input side of
Lend:

28 CHAPTER 2. GETTING STARTED

~~" Godley0

=

end

]

¢
>
-
()
(7]
[}
~

What you have now defined is an annual flow from Patient to Impatient
of $10. In the dynamic equations this model generates, Minsky converts all
amounts in accounts to positive sums—it shows the financial system from the
point of the overall economy, rather than from the point of view of the bank:

Lend
dImpatient

dt
dPatient

dt
dReserves

dt
dSafe

dt

10
Lend

—Lend

If you attach a graph to the accounts at the bottom of the bank block, you
will see the impact of this flow over time on the balances of the two accounts.
Patient’s account begins at $100 and falls at $10 per year, while Impatient’s
account begins at $0 and rises by $10 per year.

2.4. WORKING WITH MINSKY 29

- s~ Godley0

Reserves

av
-
-
|
-
b
w1

Obviously this will result in a negative total worth for Patient after 10 years,
S0 it is not a realistic model. A more sensible simple model would relate lending
to the amount left in Patient’s account (and a more complex model would relate
this to many other variables in the model). That is done in the next example,
where a constant “lendrate” has been defined and given the value of 0.1, and
Lend is now defined as 0.1 times the balance in Patient’s account. This now
results in a smooth exponential decay of the amount in the Patient account,
matched by a rise in the amount in Impatient account.

30 CHAPTER 2. GETTING STARTED

= - Godley0 ;_;:\

<

lendrate

Reserves

___tPatient

Impatient

S
5 pant
\ /
11X
/
> ~~ l
€A A AA A ¥l 4

This is because the equation you have defined is identical to a radioactive

decay equation, with the amount in the Patient account falling at 10 percent
per year:

Lend = Ilendrate x Patient
dI i
mpatient — Lend

dt
dPati

atient — _TLend

dt

Note however that there are now wires crossing over other wires? There is
a neater way to define flows.
Copying Godley Table input & outputs

Right-click on the inputs and outputs of a Godley Table and choose “copy” from
the drop-down menu:

2.4. WORKING WITH MINSKY 31

Place the copied flows and accounts and place them away from the table.
Then wire up your definition there:

lendrate

Patient

This now results in a much neater model. The same process can be used to
tidy up graphs as well:

32 CHAPTER 2. GETTING STARTED

Qs

P " Godleyo

lendrate

4
>
-
[
7
(4]
29

N 7S . N 1

end . B Pat1ent>\ ; p=omn®
Impatient

AN Impatient]—___ I\

AY
| i
»!
Pt
Vi
AV
|
>
|
Vi

A more complex model would have many more flows, and these in turn would
depend on other entities in the model, and be time-varying rather than using
a constant “lendrate” as in this example—see the Tutorial on a [Basic Banking
for an example. This example uses the engineering concept of a [*fime]
which is explained in the next section. Please note that right-clicking
godley table variables and selecting ”copy flow variables” creates a new group,
which, when clicked and selecting ”open in canvas”, changes the canvas to show
just that group. The normal canvas can be brought back by right-clicking and
selecting ”open master group”.

Using “Time Constants”

The value of 0.1 means that the amount of money in the Patient account falls
by one tenth every year (and therefore tapers towards zero). An equivalent way
to express this is that the “time constant” for lending is the inverse of 1/10, or
ten years. The next model uses a variable called 7,4, and gives it a value of
10:

2.4. WORKING WITH MINSKY 33

Patient2

As the simulation shows, the two models have precisely the same result
numerically:

34 CHAPTER 2. GETTING STARTED

/ ?
//;@@\\

\ Patient \ /

LN s
AR 5 Impatient i o
ond] . o
[
| o

N
N \\. =]
> N |« Ak 1
7 WY W\ T P
P
////GodleyZ@\

Patient2
Impatient2

Reserves2

et T e
i mpainz}— |
¢ TN

N
=] S~ S o N
Ald A \

=
Al A vl 4

The advantage of the time constant approach is that it is defined in terms
of the time that a process takes. A time constant of 10 says that, if this rate
of lending was sustained (rather than declining as the account falls), then in
precisely 10 years, the Patient account would be empty. The advantages of

2.4. WORKING WITH MINSKY 35

this formulation will be more obvious in the futoriall

Multiple banks

There can be any number of Godley Tables—each representing a different finan-
cial institution or sector in an economy—in the one diagram. The name of the
institution can be altered by clicking on the default name (“Godley0” in the first
one created) and altering it. Here is an example with 4 such institutions/sectors
defined:

= CAMM reia Dv\nk
LOITIHTICTICIA dll
B, : N Rank El
Retail Banks Non-Bank Fis

If there are interlocking accounts in these banks—if one lends to another
for example—then what is an asset for one must be shown as a liability for the
other.

Godley tables may be further placed in groups, which allows scoping of the
flow variables and their defining equations, whilst still allowing the tables to be
coupled via global variables.

36

CHAPTER 2. GETTING STARTED

Chapter 3

Tutorial

3.1 Basic System Dynamics model

In 1965, Richard Goodwin, the great pioneer of complexity in economics, pre-
sented the paper |“A Growth Cycle”| to the First World Congress of the Econo-
metric Society in Rome. It was later published in a book collection (Goodwin,
Richard M. 1967. ” A Growth Cycle,” in C. H. Feinstein, Socialism, Capitalism
and Economic Growth. Cambridge: Cambridge University Press, pp. 54-58.);
to my knowledge it was never published in a journal.

Goodwin’s model has been subjected to much critical literature about im-
plying stable cycles, not matching empirical data, etc., but Goodwin himself
emphasized that it was a “starkly schematized and hence quite unrealistic model
of cycles in growth rates”. He argued however that it was a better foundation
for a more realistic model than “the more usual treatment of growth theory or
of cycle theory, separately or in combination.”

Goodwin emphasized the similarity of this model to the Lokta-Volterra
model of interacting predator and prey, which can make it seem as if it was
derived by analogy to the biological model. But in fact it can easily be derived
from a highly simplified causal chain:

e The level of output (Y) determines the level of employment (L), with
L =Y/a where a is a measure of labor productivity;

e Given a population N, the employment rate A = L/N plays a role in
determining the rate of change of the wage w: Goodwin used a linear
approximation to a non-linear “Phillips Curve”:

37

https://en.wikipedia.org/wiki/Goodwin_model_(economics)

38

CHAPTER 3. TUTORIAL

His linear approximation was:

L
wat' TP

In a simple two-class model, profits IT equals the level of output Y minus
the wage bill: Il =Y —wL

For simplicity, Goodwin assumed that all profits were invested, so that
Investment equals profits: I = II.

Investment is the rate of change of the capital stock K;

The level of output is, to a first approximation, determined by the level
of capital stock (K). A simple way of stating this is that Y is propor-
tional to K: Y = K/v, where v is a constant (Goodwin notes that this
relation “could be softened but it would mean a serious complicating of
the structure of the model”); and finally

Goodwin assumed that labor productivity grew at a constant rate a, while
population grew at a constant rate 3.

Goodwin published the model as a reduced form equation in the two
system states the employment rate (A) and the workers’ share of output

(w):

3.1. BASIC SYSTEM DYNAMICS MODEL 39

This form is useful for analytic reasons, but it obscures the causal chain that
actually lies behind the model. With modern system dynamic software, this
can be laid out explicitly, and we can also use much more meaningful names.
We'll start with defining output (which is a variable). Click on on the Icon
Palette, or click on the Operations menu and choose “Variable”. This will open
up the “Specify Variable Name” window:

Create Variable

Name|GDP| Jﬂ
Type flow =
Value
Rotation 0
Short description

Detailed description

Slider Bounds: Max |1
Slider Bounds: Min |-1

Slider Step Size |0.1

Enter “GDP” into the “Name” field, and leave the other fields blank—since
GDP is a variable and we’re defining a dynamic system, the value of GDP
at any particular point in time will depend on the other entities in the model.
Now Click OK (or press “Enter”). The variable will now appear, attached to
the cursor. Move to a point near the top of the screen and click, which will
place the variable at that location.

We are now going to write the first part of the model, that Labor (Labor)
equals output (GDP) divided by labor productivity (LabProd). Just for the
sake of illustration, we’ll make a a parameter, which is a named constant (this
can easily be modified later). For this we start by clicking on on the
Palette, or by choosing Insert/variable from the menu. This will pop-up the
Edit Constant window:

Create Constant

Name|LabProd jl
Type -l
Value 1
Rotation |0
Short description
Detailed description
Slider Bounds: Max |1
Slider Bounds: Min |-1
Slider Step Size |0.1

o | cance |

40 CHAPTER 3. TUTORIAL

There is actually no real difference between the “Edit constant” dialog and
the “Edit variable” dialog. The window’s title differs, and the default value
of Type is “constant” instead of “flow”. We're going to select “parameter”,
allowing one to give the parameter a name.

Give the paramter the name “LabProd” and the value of 1 (i.e., one unit
of output per worker). Click OK or press Enter and the constant will
now be attached to the cursor. Place it below GDP:

Create Constant

Name|LabProd

Type -
Value|1
Rotation |0

Short description
Detailed description
Slider Bounds: Max |1

Slider Bounds: Min -1
Slider Step Size |0.1

oK Cancel

Now we need to divide GDP by LabProd. Click on the B> symbol on the
palette and the symbol will be attached to the cursor. Drag it near the other
two objects and click. Your Canvas will now look something like this:

DP

>

LabProd

HIE

Now to complete the equation, you have to attach GDP to the top of the
divide block and LabProd to the bottom.

Now move your cursor to the right hand side of and click, hold the
mouse button down, and drag. An arrow will come out from . Drag this
arrow to the top of the divide block (where you'll see a tiny multiply sign) and
release the mouse. You should then see this:

DP

5

LabProd

HiF

3.1. BASIC SYSTEM DYNAMICS MODEL 41

When the mouse hovers over a block, you will then see little circles that
identify the input and output ports of the block:

LabProd >

Those are the connection points for wires, so start dragging from one and
release on the other. Now wire LabProd to the bottom of the Divide block
(where you'll see a miniature divide symbol (blown up below):

Then click on in the Design Icons to create a new variable, call it Labor,
place it the the right of the Divide block, and wire the output port from the
Divide block to the input port for Labor:

To show the correspondence between the flowchart above and standard mod-
eling equations, click on the equations tab:

GDP =

GDP
Labor =

LabProd

Now let’s keep going with the model. With Labor defined, the employment
rate will be Labor divided by Population. Define Population as a parameter
(we’ll later change it to a variable), and give it a value of 110.

42 CHAPTER 3. TUTORIAL

Population: Value=0

Name Population
Type|parameter
Initial Value[11
Rotation |0

4 l4

Short description
Detailed description
Slider Bounds: Max |1
Slider Bounds: Min |-1
Slider Step Size 0.1 relative

0K Cancel

Add it to the Canvas and you are now ready to define the employment rate—
another variable. Click on , give it the name “\lambda” (be sure to include
the backslash symbol), put another Divide block on the canvas, choose Wire
mode and wire this next part of the model up. You should now have:

Population

Now switch to the equations tab, and you will see

GDP =
GDP
Lab = —
abot LabProd
\ Labor
"~ Population

Notice that Minsky outputs a Greek A in the equation. You can input
such characters directly, if your keyboard supports them as unicode characters,
however you can also use a subset of the LaTeX language to give your variables
more mathematial names.

With the employment rate defined, we are now ready to define a “Phillips
Curve” relationship between the level of employment and the rate of change
of wages. There was far more to Phillips than this (he actually tried to intro-
duce economists to system dynamics back in the 1950s), and far more to his

3.1. BASIC SYSTEM DYNAMICS MODEL 43

employment-wage change relation too, and he insisted that the relationship was

nonlinear (as in Goodwin’s figure above). But again for simplicity we’ll define

a linear relationship between employment and the rate of change of wages.
Here we need to manipulate the basic linear equation that Goodwin used:

L ytpa
wdt TP

Firstly multiply both sides by w:

d
p (=v+p-N)

Then integrate both sides (because integration is a numerically much more
stable process than differentiation, all system dynamics programs use integration
rather than differentiation):

w=wo+/w'(—7+p'/\)

In English, this says that the wage now is the initial wage plus the integral
of the wage multiplied by its rate of change function. That’s what we now
need to add to the Canvas, and the first step is to spell out the wage change
function itself. Firstly, since we’re using a linear wage response function, the
rate of employment has to be referenced to a rate of employment at which
the rate of changes is zero. I suggest using Milton Friedman’s concept of a
“Non-Accelerating-Inflation-Rate-of-Unemployment”, or NAIRU. We need to
define this constant, subtract it from 1, and subtract the result from the actual
employment rate A. To enter 1, click on , define a constant and give it a
value of 1. Then define another variable NAIRU, and give it a value of 0.05 (5%
unemployment). Select “parameter” as the variable type. Subtract this from 1
and subtract the result from A. You should have the following:

44 CHAPTER 3. TUTORIAL

Now we need to multiply this gap between the actual employment rate and
the “NAIRE” rate by a parameter that represents the response of wages to this
gap. Let’s call this parameter Emp_{Response} (remember to include the
underscore and the braces). Define the parameter, give it a value of 10, and
multiply (A minus NAIRE) by it:

Population

Now we are ready to add a crucial component of a dynamic model: the
integral block, which takes a flow as its input and has the integral of that flow
as the output. The wage rate w is such a variable, and we define it by clicking
on the ® symbol in the Icon Palette (or by choosing Operations/Integrate from
the Insert menu). This then attaches the following block to the cursor:

-

Now we need to rename this from the default name of “int1” to “w” for the
wage rate. Either right click or double-click on “intl1” and this will bring up the
edit window . Rename it to “w” and give it a value of 1:

int1

Name \w

Initial Value|1

Rotation |0
relative

0K Cancel

To compete the integral equation, we need to multiply the linear employ-
ment response function by the current wage before we integrate it (see the last
equation above). There are two ways to do this. First, place a multiply block
between the wage change function and the integral block, wire the function up
to one input on the multiply block, and then either:

3.1. BASIC SYSTEM DYNAMICS MODEL 45

e wire the output of the w block back to the other input on multiply block;
or

e Right-click on w, choose “Copy Var”, place that copy before the multiply
block, and wire it up.

The first method gives you this initial result:

g

That looks messy, but notice the blue dot on the wire? Click and drag on
that and you will turn the straight line connector into a curve:

Population

The second approach, which I personally prefer (it’s neater, and it precisely
emulates the integral equation), yields this result:

Population

From this point on the model develops easily—“like money for old rope”, as
one of my maths lecturers used to say. Firstly if we multiply the wage rate w
by Labor we get the Wage Bill. To do this, firstly create the variable Wage
Bill, and put it well below where w currently is on your diagram:

46 CHAPTER 3. TUTORIAL

Population

Now right-click on WageBill and choose “Flip”. This rotates the block
through 180 degrees (any arbitrary rotation can be applied from the variable
definition window itself). Now right-click on Labor, which you've already de-
fined some time ago, and choose “Copy”. Place the copy of Labor to the right
of WageBill:

<WageB1'll<

Now insert a multiply block before WageBill, and wire w and Labor up to
it. Curve the wire from w using the blue dots (you can do this multiple times to
create a very curved path: each time you create a curve, another 2 curve points
are added that you can also manipulate, as I have done below:

3.1. BASIC SYSTEM DYNAMICS MODEL 47

The next step is to subtract the WageBill from GDP to define Profits.
Take a copy of GDP, insert it above WageBill, insert a subtract block, and
wire it up to define the variable Profits:

WageBi11<

In the simple Goodwin model, all Profits are invested, and investment of
course is the rate of change of the capital stock Capital. Create a variable
called Investment, wire this up to Profits, and then create a new integral variable
Capital using the » icon. Right-click or double-click on it to rename nt2 to
Capital, and give it an initial value of 300:

int1

Name Capital
Initial Value 330
Rotation|180

relative

OK Cancel

Wire this up to Investment:

< Capital In vestmen

48 CHAPTER 3. TUTORIAL

Now there’s only one step left to complete the model: define a parameter
CapOutputRatio and give it a value of 3:

CapOutRatio: Value=3

Name|CapOutRatio
Type|parameter

[ER[E]

Initial Value

Rotation (180

Short description

Detailed description

Slider Bounds: Max [0
Slider Bounds: Min |8.69169e-311

Slider Step Size |1.69}'6e—312 [relative

0K Cancel

Divide Capital by this, and wire the result up to the input on GDP. You
have now built your first dynamic model in Minsky:

Before you attempt to run it, do two things. Firstly from the Runge Kutta
menu item, change the Max Step Size to 0.01—to get a smoother simulation.

Runge-Kutta parameters

Min Step Size d
Max Step Size 0.01
no. steps per iteration |1
Absolute error |0.001
Relative error |0.01
Solver order (1,2 or 4) |4

Implicit solver -

o || canca |

Secondly, add some graphs by clicking on the % icon, placing the graph
in the middle of the flowchart, and wiring up A and w to two of the four inputs
on the left hand side. You will now see that, rather than reaching equilibrium,
the model cycles constantly:

3.2. BASIC BANKING MODEL 49

If you click on the equations tab, you will see that you have defined the
following system of equations:

Capital
GDP = —— — —
CapOutRatio
Investment = Profits
GDP
Labor = LabProd
Profits = GDP — WageBill
WageBill = w x Labor
- Labor
~ Population
_ WageBill
“ T TGDpp
dw
- = Empgesponse X (A — (1 = NAIRU) x w
dCapital
% = Investment

At this level of complexity, the equation form—if you’re accustomed to work-
ing in equations—is as accessible as the block diagram model from which it was
generated. But at much higher levels of complexity, the block diagram is far
easier to understand since it displays the causal links in the model clearly, and
can be structured in sub-groups that focus on particular parts of the system.

3.2 Basic Banking model

If you haven’t yet read the section on [Creating a Banking Modell do so now.
This tutorial starts from the skeleton of the “Loanable Funds” model built in

that section, and using to specify how quickly lending occurs.

50 CHAPTER 3. TUTORIAL

3.2.1 Loanable Funds

Our model begins with the single operation of Patient lending to Impatient at a
rate that, if kept constant at its initial level of of $10 per annum, would empty
the Patient account in 10 years. Because the rate of outflow declines as the
Patient account declines, the money in the account decays towards zero but
never quite reaches it.

Asset Liability Equity
FFl _FEFFIFEFR] _[FEF]
Flows | / Stock Vars - IReservesV |PatientV|ImpatientV||Safe V|A-L-E
.i Initial Conditions 120 100 0 20 0
.= Patient lends to Impatient -Lend Lend 0

Many more actions need to be added to this model to complete it. For a
start, Impatient should be paying interest to Patient on the amount lent. Add
an additional row to the Godley Table by clicking on the ‘4’ key next to “Patient
lends to Impatient” to create a blank row:

Asset Liability Equity
Flows | / Stock Vars - IReservesV |PatientV|ImpatientV||Safe V|A-L-E
=21 Initial Conditions 120 100 0 20 0
|t I |Patient lends to Impatient -Lend Lend 0
=T 0

Then label this flow “Impatient pays interest” and make the entry “Interest”
into the cell for Patient on that row. Make the matching entry “-Interest” in
the cell for Impatient. The flow “Interest” now appears on the input side of the
Godley Table on the Canvas:

Asset Liability Equity
Flows | / Stock Vars - IReservesV¥ |PatientV|ImpatientV||Safe V|A-L-F
-y Initial Conditions 120 100 0 20 0
]|t [I |Patient lends to Impatient -Lend Lend 0
= Impatient pays interest Interest |-Interest 0

Interest now has to be defined. It will be the amount in Impatient’s account
(since this began at zero) multiplied by the rate of interest charged by Patient:

With that definition, the dynamics of the model change: rather than the
Patient account falling to zero and Impatient rising to 100, the two accounts
stabilize once the outflow of new loans by Patient equals the inflow of interest
payments by Impatient:

)Impatient

3.2. BASIC BANKING MODEL 51

< QO

P = GodleyO\ \\I*\\

_— N

Impatient

>

Patient\f . | . B
end " <
Impatient> \ |

|-
« 3 N n
ks i oY 2

Though it stabilizes, this is is still a very incomplete model: neither Patient
nor Impatient are doing anything with the money apart from lending it and
paying interest. I am now going to assume that Impatient is borrowing the
money in order to hire workers to work at a factory and produce output for
sale. So we now need another account called Workers, and a payment from
Impatient to Workers called Wage:

Asset Liability Equity
PPl FFEFE]FFEFE] FEFP]FEF]
Flows | / Stock Vars - ReservesV|PatientV|ImpatientV |WorkersV|Safe V|A-L-
T Initial Conditions 120 100 0 0 20 0
+ [T [{ |Patient lends to Impatient -Lend Lend 0
+ [T [l | Impatient pays interest Interest | -Interest 0
=TT -Wage wage 0

In a more complex model, the Wage bill could be related to the current rate
times the number of workers in employment. In this simple model I will regard
the wage as a function of the amount of money in Impatient’s account turning
over several times a year in the payment of wages. Using a time constant, I
will assume that the amount in Impatient’s account turns over 3 times a year
paying wages, so that the time constant 7r is 1/3rd of a year:

52 CHAPTER 3. TUTORIAL

— Impat1ent)—> S
TTI N

The dynamics of this incomplete model are very different again: very little
money turns up in the Impatient account, and all of the money ends up in the

Workers account. However economic activity also ceases as both lending and
the flow of wages falls towards zero:

~ Godley0 ~ ;\:\

Workers
Safe

o
S
o
3]
0
]
24

(Impatient

YAl

Patient

Impatient > / \\\
<

N

Workers

1

A ALA kA

This is because wages are being paid to workers, but they are doing nothing
with it. So we need to include consumption by workers—and by Patient as well.
Here the reason time constants are useful may be more obvious. The time
constant for consumption by Workers is given the very low value of 0.05—or
1/20th of a year—which indicates that if their initial rate of consumption was
maintained without any wage income, they would reduce their bank balances
to zero in 1/20th of a year or about 2.5 weeks.

Chapter 4

Reference

4.1 Operations
4.1.1 add +

Add multiple numbers together. The input ports allow multiple wires, which
are all summed. If an input port is unwired, it is equivalent to setting it to zero.

4.1.2 subtract —

Subtract two numbers. The input ports allow multiple wires, which are summed
prior to the subtraction being carried out. If an input port is unwired, it is
equivalent to setting it to zero. Note the small ‘4’ and ‘—’ signs on the input
ports indicating which terms are added or subtracted from the result.

4.1.3 multiply x

Multiply numbers with each other. The input ports allow multiple wires, which
are all multiplied together. If an input port is unwired, it is equivalent to setting
it to one.

4.1.4 divide +

Divide a number by another. The input ports allow multiple wires, which are
multiplied together prior to the division being carried out. If an input port is
unwired, it is equivalent to setting it to one. Note the small ‘x’ and ‘+’ signs
indicating which port refers to the numerator and which the denominator.

4.1.5 log
Take the logarithm of the x input port, to base b. The base b needs to be

specified — if the natural logarithm is desired (b = e), use the

instead.

53

54 CHAPTER 4. REFERENCE

4.1.6 pow z¥

Raise one number to the power of another. The ports are labelled x and y,
referring the the formula x¥.

4.1.7 It <

Returns 0 or 1, depending on whether = < y is true (1) or false (0).

4.1.8 le <

Returns 0 or 1, depending on whether = < y is true (1) or false (0).

4.1.9 eq =

Returns 0 or 1, depending on whether « = y is true (1) or false (0).

4.1.10 min

Returns the minimum of z and y.

4.1.11 max

Returns the maximum of x and y.

4.1.12 and A

Logical and of z and y, where x < 0.5 means false, and = > 0.5 means true. The
output is 1 or 0, depending on the result being true (1) or false (0) respectively.

4.1.13 or V

Logical or of x and y, where z < 0.5 means false, and x > 0.5 means true. The
output is 1 or 0, depending on the result being true (1) or false (0) respectively.

4.1.14 not —

The output is 1 or 0, depending on whether z < 0.5 is true (1) or false (0)
respectively.

4.1.15 time ¢

Returns the current value of system time.

4.1. OPERATIONS 55

4.1.16 differentiate d/dt

Symbolically differentiates its input with respect to system time, producing
d/dt[input]. For further explanation regarding differentiation, see this wikipedia

page.

4.1.17 User defined function

A user defined function is a functioned defined by an algebraic expression. Sup-
port for this feature is courtesy of the wonderful exprtk library developed by
Arash Partow.

A user defined function has a name, parameters and an expression. Example
expressions are things like x+y or sin(x). More details of the sorts of expressions
possible can be found in the [User Defined Functions|section of the manual.

The parameters are specified as part of the name, so a user defined function
adding x and y would be called useradd(a,y) and the sin example might be
called mysin(x). Functions with up to two arguments can be wired on the can-
vas. User defined functions can call other user defined functions, so specifiying
more than 2 parameters can be a useful thing to do.

4.1.18 copy

This just copies its input to its output, which is redundant on wiring diagrams,
but is needed for internal purposes.

4.1.19 integrate [dt

Creates an integration (or stock) variable. Editable attributes include the vari-
able’s name and its initial value at ¢ = 0. The function to be integrated needs
to be connected to the top port. The bottom port can optionally be connected
to a constant, parameter or variable, which is used to specify the initial value
of the integral.

4.1.20 sqrt +/

This produces the square root of the input value. For example, connecting the
value of 9 with the “sqrt” block will produce the value of 3.

4.1.21 exp

Connecting a variable (for example, “time”) to this block will produce the ex-
ponential function e® where x is the input variable.

4.1.22 In

Produces a natural logarithm of the input, to the base of e. This takes the

[T

equation log, x where “x” is the input.

https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Derivative
http://www.partow.net/programming/exprtk/index.html

56 CHAPTER 4. REFERENCE

4.1.23 sin

Produces a sine function of the input. For example, connecting a “time” block
to this function, and then to a graph, will produce a sine wave. For further
explanation regarding trigonemtric functions, see this wikipedia pagel

4.1.24 cos

Produces a cosine function of the input. For example, connecting a “time” block
to this function, and then to a graph, will produce a cosine wave. For further
explanation regarding trigonemtric functions, see this wikipedia pagel

4.1.25 tan

Produces a tangent function of the input. For example, connecting a “time”
block to this function, and then to a graph, will produce a tangent graph. For
further explanation regarding trigonemtric functions, see [this wikipedia page.

4.1.26 asin

Produces an arc sine function of the input, or the inverse of the sine function. For
further explanation regarding trigonemtric functions, see this wikipedia page.

4.1.27 acos

Produces an arc cosine function of the input, or the inverse of the cosine function.
For further explanation regarding trigonemtric functions, see [this wikipedia

page.

4.1.28 atan

Produces an arc tangent function of the input, or the inverse of the tangent
function. For further explanation regarding trigonemtric functions, see this
wikipedia pagel

4.1.29 sinh

eT_e %

hyperbolic sine function =

4.1.30 cosh

e+e ”

hyperbolic cosine function =5

4.1.31 tanh

e _e~®

hyperbolic tangent function &t

https://en.wikipedia.org/wiki/Trigonometric_functions
https://en.wikipedia.org/wiki/Trigonometric_functions
https://en.wikipedia.org/wiki/Trigonometric_functions
https://en.wikipedia.org/wiki/Trigonometric_functions
https://en.wikipedia.org/wiki/Trigonometric_functions
https://en.wikipedia.org/wiki/Trigonometric_functions
https://en.wikipedia.org/wiki/Trigonometric_functions
https://en.wikipedia.org/wiki/Trigonometric_functions

4.2. TENSOR OPERATIONS o7

4.1.32 abs |z

absolute value function

4.1.33 floor |z]

The greatest integer less than or equal to x.

4.1.34 frac

Fractional part of z, ie z — |z].

4.2 Tensor operations

In the following operations, an axis argument can be supplied in the operation
edit dialog. The axis name is symbolic and available in a drop down box. If
the axis name is not specified, then the operation will be applied as though the
input was flattened (unrolled to a vector), and then the result reshaped to the
original tensor.

4.2.1 sum >

Sum along a given axis.

4.2.2 product []

Multiply along a given axis.

4.2.3 infimum

Return the least value along a given axis.

4.2.4 supremum

Return the greatest value along a given axis.

4.2.5 any

Return 1 if any value along a given axis is nonzero, otherwise return 0 if all are
Z€ro.

4.2.6 all

Return 1 if all values along a given axis are nonzero, otherwise return 0 if any
are zero.

58 CHAPTER 4. REFERENCE

4.2.7 infindex

Return the index of the least value along a given axis.

4.2.8 supindex

Return the index of the greatest value along a given axis.

4.2.9 running sum) +

Computes the running sum of the input tensor along a given axis. For example,
take this rank 2 tensor:

o Ot =
~N N
S W W
TN

The running sum of this tensor, along the horizontal dimension, is:

1 3 6 10
5 9 12 14
8 15 21 26

4.2.10 running product []+

Computes the running product of the input tensor along a given axis. For
example, take this rank 2 tensor:

oo Ot =

2 3 4
4 3 2
7 6 5
The running product of this tensor, along the horizontal dimension, is:

1 2 6 24
5 20 60 120
8§ 56 336 1680

4.2.11 difference A

Computes the nearest neighbour difference along a given direction. The optional
argument can be used to specify the number of neighbours to skip in computing
the differences.

4.3. SWITCH 59

4.2.12 index

Returns the index within the hypecube where the input is true (ie > 0.5). For
example, where

0 3 6
1(3,3) = 14 7|,
2 5 8
0 3
idx((3,3) <5) = 1 4 ,
2

Note that the output array has the same shape as the input, with unused values
padded with NANs (missing value).
Dimension and argument parameters are unused.

4.2.13 gather

Gather collects the values at index locations indexed by the second argument.
The output tensor has the same shape as the second (index) argument.

If the index is not an integer, the gather will linearly interpolate between
the values on either side. So z[2.5] = 0.5(z[2] + z[3]).

4.2.14 inner product -

Computes

241yl — 1,01 seesfirgy —1 § Lireosia—1,kdat1eeoirg 1951, 0y —1,k)
k

where a is the given axis, and r, and ry are the ranks of x and y respectively.
Not currently implemented.

4.2.15 outer product ®

Computes
Zi1482 eyl sJ1seesdirg — Li15582,50ne g YT15eesiry *

where 7, and r, are the ranks of x and y respectively.
Not currently implemented.

4.3 Switch

#3 A switch block (also known as a case block, or select in the Fortran world)
is a way of selecting from a range of alternatives according to the value of the
input, effectively defining a piecewise function.

60 CHAPTER 4. REFERENCE

N
O

>

-
A A A Ab AbA kA b U

An example switch block with 3 cases

The default switch has two cases, and can be used to implement an if/then/else
construct. However, because the two cases are 0 and 1, or false and true, a two
case switch statement will naturally appear “upside down” to how you might

think of an if statement. In other words, it looks like:
if not condition then

...else

You can add or remove cases through the context menu.

4.4 Variables

Variables represent values in a calculation, and come in a number of varieties:

Constants represent an explicit numerical value, and do not have a name.
Their graphical representation shows the actual value of the constant.

Parameters are named constants. All instances of a given name represent the
same value, as with all other named variables, so changing the value of one
parameter, either through its edit menu, or through a slider, will affect all
the others of that name. Parameters may be imported from a CSV file]
which is one way of inserting a tensor into the simulation.

Flow variables have an input port that defines how the value is to be cal-
culated. Only one flow variable of a given name can have its input port
connected, as they all refer to the same quantity. If no input ports are
connected, then flow variables act just like parameters.

Integral variables represent the result of integrating its input over time by
means of the differential equation solver. The integrand is represented by
the input to an integral operator that is attached to the integral variable.

4.4. VARIABLES 61

Stock variables are the columns of Godley tables, and represent the integral
over time of the sum of the flow variables making up the column.

Variables may be converted between types in the variable edit menu, avail-
able from the context menu, subject to certain rules. For example, a variable
whose input is wired anywhere on the canvas cannot be changed from “flow”.
Stock variables need to be defined in a Godley table, and so on.

4.4.1 Variable names

Variable names uniquely identify variables. Multiple icons on the canvas may
have the same name — they all refer to the same variable. Variable names
have scope, which is either local (no initial ‘), belonging to an outer
(indicated by a leading ‘> on the inner group variable, and the outer group
variable having no such leading ‘:’), or completely global otherwise. You may
select a variable name from a drop down list in the “name” combo box, which

makes for an easier way of selecting exactly which variable you want.

4.4.2 Initial conditions

Variable initial conditions can be defined through the “init value” field of the
variable edit menu, or in the case of Godley table stock variables, through the
initial condition row of the Godley table. An initial value can be a simple
number, or it can be a multiple of another named variable (or parameter). In
case of symbolic definitions, it would be possible to set up a circular reference
where the initial value of variable A is defined in terms of the initial value of
variable B, which in turn depends on the intial value of A. Such a pathological
situation is detected when the system is reset.

4.4.3 Tensor valued initial conditions

There is also a simple functional language, which allows for the generation of
tensor-valued operations. These functions take the form func(ni,na,...,n,)
where r is the desired rank, and nq,no, etc are the dimensions of the tensor.

Available functions include:
name | description

one | the tensor is filled with ‘1’
zero | the tensor is filled with ‘0’
iota | the arithmetic sequence (0, 1,...T]; n;)

eye | diagonal elements filled with ‘1’ offdiagonal ‘0’
rand | tensor filled with random numbers in the range [0,1)

e eye is equivalent to one for vectors.

e rand generates different random numbers each time the simulation is reset,
and uses the clib rand () function.

62 CHAPTER 4. REFERENCE

4.4.4 Sliders

From the context menu, one can select a slider to be attached to a variable,
which is a GUI “knob” allowing one to control a variable’s initial value, or the
value of a parameter or constant. Adjusting the slider of an integral (or stock)
variable while the system is running actually adjusts the present value of the
variable.

Slider parameters are specified in the edit menu: max, min and step size. A
relative slider means that the step size is expressed as a fraction of max-min.

4.4.5 Importing a parameter from a CSV file

After creating a parameter from the “Variable” drop-down in the “Insert” menu,
right-clicking the parameter and selecting the option to “Import CSV”, will open
a dialogue box that allows you to select a CSV file. Upon selecting the file, a
dialog is opened, allowing you to specify assorted encoding parameters. The
dialog looks somewhat like this:

Columnar I Separator|, | Decimal Separator || =/ Escapel|\ | Quote|* | Merge Delimiters |~ Missing Value|nan 4| Col Width 150]
Duplicate Key Action throwException | Horizontal dimensian |?
Dimension X X
Type|string
Format
Name|country quarter unit
Header|country uarter init alues
dvanced economies! 1999-01 Percentage of GDP | 1000
dvanced economies| 1899-02 Percentage of GDP | 1000
|Advanced economie 999-03 Percentage of GDP_ 1 1000
|Advanced economie 999-04 Percentage of GDP | 1000
dvanced economies! 2000-01 Percentage of GDP | 1000
dvanced economies! 2000-02 Percentage of GDP | 1000
|Advanced economies. 2000-0 Percentage of GDP_ 1 1000
|Advanced economies 2000-04 P e of GDP 11000
dvanced economies! 2001-0 Percentage of GDP | 1000
dvanced economies! 2001-0 Percentage of GDP | 1000
|Advanced economies. 2001-03 Percentage of GDP_ 1 1000
|Advanced economies! 2001-04 Percentage of GDP 1 1000
dvanced economies! 2002-01 Percentage of GDP | 1000
dvanced economies! 2002-02 Percentage of GDP | 1000
|Advanced economies| 2002-03 Percentage of GDP [1000
1
Cancel | oK

In this case, the system has automatically guessed that the data is 3 di-
mensional, and that the first 3 columns give the axis labels for each dimension
(shown in blue), and the 4th column contains the data. The first row has been
automatically determined to be the first row of the file — with the dimension
names are shown in green.

In this case, the automatic parsing system has worked things out correctly,
but often times it needs help from the computer user. An example is as follows:

4.4. VARIABLES 63

Columnar 5 Separator |, +| Decimal Separator|. | Escape|\ +|Quote]” +|Merge Delimiters| Missing Valuenan | Col Width 80]
Duplicate Key [k | [
Dimension B R =]] =® 2 | R I R] I] B
Type|value alue tring tring tring alue Istring Istring tring Istring tring tring
Format:
Name 108302 2010 30/07/201(CITY OF WIGRFATER | Pi ‘ James W1U 1HB |Freehold
[Year Dat; District (] Counts I Addre teods | Tenur naid
Bl 123682 1 10/05/2014CITY QF BEICITY O 0! TRAL I/|Proprietor({Apartmen easehold 00
[DY280986 19007 08/10/200°[CITY OF DFGITY OF DFR00 HOPELANLIISF O Proprietorl:|l ea Farm, § Fr d 0
Y420477 12005 07/07/200[CITY QF DFICITY QF DF13: 0 [HOPFI EQ Proprietor(l and on the| Freehold |1325(
%ﬁgﬁ 0. 4/ 0 ATER N1 r(-|land on thy Fr d 1170
1 04/1 1ISTOCKPOH ER \[200f [0) ik 1 Ere d 12001
HD?264780 05/1 4ST Al BANSHFRTF(AT HAI or(iwickbi|AL3 6. Ereehold 50
K45404 0. JICANTERBUIKENT TRID) . Payls HCTT 9] Ere d 00
ILABOAD: 1 BLACKPOQIRLACKPOCI20 BOX S A or(115, Epsom I[FYS Freehold 0
INGL 921304 4 0. ACITY QF A LI10f 0 r([Flat 21,6 1 asehold 110
INGI 92130t 4 0 ACITY QF ATER 110 0 LA r("|Flat 3,6 P | asehold 11000000 |
NYK224023) 0 0 (HARROGATINORTH YOU180 0 E or(JMitre Hous{HG1 SR Ereehold 1800000 |
QN?7315 04, VALF OF WIOXEQRDSH E r(-[Amey Plc_l0X14 45D |Er d_12500000]
NYK123602 0 01BRADEQROIWEST YOR1450 H E ar(|Fosters oyBD13 4DN [Freehold ’Aj.EEEE_
NYK12967] 1 IBRADEQRCIWEST YOR 2501 Hi E r(.\Denholme HBD13 4DN |Fre d 1250000 |
NYKT6611! 0/0 01BRADEQRDIWEST YORIAR0 H E r(.1153,15b an Er d 1450000 |
R 4/11/200011 FEDS WEST YORI10! 0 IH E ar(74 Moorfie[l S17 3RS [Freehold |10 0.
WVIERT 45119007 A/AR/ANNTRBANEABNIWEST VABIINANANA TH £ riatarlland and hilRN12 ADN [Erashald 19AAAAAN
N}
Cancel ‘ oK ‘

In this example, Minsky has failed to determine where the data starts, prob-
ably because of the “Unit” and “Frequency” columns. So the first thing to do
is tell it where the data is located by clicking on the first cell of the data region.

Columnar &I Separator |, | Decimal Separator, | Escape|\ «|Quote]” | Merge Delimiters| Missing Valuenan | Col Width [0]
Duplicate Key [| 7
Dimension X 2 = = I >z 2] | 2] I]] I] I =
. Type|value value ring tring Istring value Istring Istring tring Istring Istring tring
ormat
Name| 108302 2010 30/07/201(CITY OF ATER | Proprietor(’ Freehold
Header|Title numbdYear Daty Distri dministratlPrice (tex bl e
BL 123682 201 JCITY QF BECITY O] Proprietor(easehold
1DY389286 1200 200 [GITY OF DFEGITY Ol roprietor(. Freehold
Eﬁ%ﬁ?ﬁéé 00! 07/07/200[CITY Of 0 Proprietor(: Freehold 11325000 |
00: 124/12/2004 T | roprietor(:/land on the Ereehold (1700
GM75221 01 104/12/201 T | BOX S A XEM Proprietor(” 8 3HL Freehold 1200000 |
|HD264780 [20! gf EL [HERTFE RIN.BR Proprietor(.Childwickbi [AL 3 6.1X Freehold 0|
1K45404 0 3/20172 CANTERBUIKEN' 8 R Q £Proprietor('St_Pauls HIGT1 21 Freehold 000 |
[LAB6SS. 0 12/2014 RLACKP! BOX roprietor(’|15, Epsom RITT Freehold 1200000
NGI 921304120 /2014CITY OF AT roprietor([Elat 21,6 P 3T1 easehold |10
NGL921 Eg 014 014CITY QF AT AN[IProprietor(’|Flat 3, 6 Po/W2 3TL asehold (1000000 |
010 07/21 HARROGATINORTH YO/ E Proprietor(. Mitre HousiHG1 5RX__[Freehold %ﬁ[[[ﬂ_
N273153 12008 LF OF WIOXFORDSH E roprietor(/Amey Plc, £0X14 4PP |Freehold 0000
[WYK12360:2007 FQRDIWE: F M/IProprietor{-|Fosters L ovBD13 4DN (Freehold (450000 |
IWYK129622190 12/2007% EQRDIWES E roprietor(: Denholme MBN13 4DN [Freehold 250000 |
07/200] FORLIWE: 450000 E roprietor(. 153, 15b an Freehold 1450000 |
IWYK52312: /11/200711 FF| WES 1000000 E Proprietor(. 74, Moorfiel S12 3R Freehold 1001 0.
WVICAT A5 T AR /00T RBANEABRWERT VA [200AAAN £ Tl and hilRN12 ADN [Erashald 1900NANN
1

Note that the data region must lie in the bottom right corner of the table, so
you might need to rearrange the CSV file using a speadsheet program to ensure
this. The “columnar” option exists as a way of ignoring any data to the right
of a single data column, useful for the case where some free form comments are
appended to the rows.

Now the axes index labels are rendered in blue, the axes names in green and
the data is in black. In this example, some axes duplicate others, in effect the
data is a planar slice through the hypercube. We can remove these axes from
the data by deselecting the column using the checkbox in the “Dimension” row.
The deselected columns are rendered in red, indicating data that is commented
out:

64 CHAPTER 4. REFERENCE

Columnar 5 Separator|, | Decimal Separator|. +|Escape|\ ~|Quote" | Merge Delimiters | Missing Valuelnan | ColWidth 80 <]
Duplicate Key i | Horizontal dimension |-
Dimension 2 a =® R | R u] I] I] ® I =] R
Type|value tring tring Istring Istring Istring tring Istring tring tring
Format:
Name| 108302 30/07/201(CITY OF ATER | Praprietor(] James $W1U 1HB |Freehald
Header| e be|Year Date rice (teyt Counts ariah | i tcode [Tenure ald |
BL 123682 1 CITY OF TRAL £/Proprietor(Apartmen £a! L |
[DY389286 12007)/200°ICITY OF DEICITY OF DF. HOPELANC/SLE Of Proprietor(-|| ea Farm, Freehold |
Y420477 1200 07/0 D 1 HOPFL £ Ol roprie tor(:l and on thel Freehold 325000 |
%ﬁﬂ 0. 12471 R [N P F OF M#Proprietor(-land on the Freehold 70000 |
1 10471 A200(A Praprietor(6, Fylde Avd HL Ereehold 00000
{HD264780 6 il KATHARIN,/ VI|Proprie tor(4Childwickbi|AL3 6.) Ereehold 675
[K454045 Eﬂfﬁ 0 Fl 2Proprietor(-St Pauls HICT 121 Freehold 830000
ILAB6SDA 18/12/ 0 Proprietor(115 Fpsom [[FY5 3HS — [Freehold 1200000 |
NGL.921304| 19/02 L110f roprietor(|Flat 21,6 P! 3T easehold [1000000 |
NGL921308/2014 02, 100000 , AN[|Proprietor(|Flat 3,6 Po! ea d_11000000 |
NYK?224023] 0 1180000 EQF roprietor(Mitre HousdHGT S5RX__|Freehold 1800000 |
QN27215 04, H ITE F OF M/ Proprietor(- Amey Plc, SI0X14 4PP [Ereehold 12500000 |
NYK123607 0 YOR ’A_Sf HOPF| [EOF roprie tor(:/Fosters | o: 13 4DN |Freehold 450000 |
NYK12967" 1 YORI2501 HOPE! L F OF M#Proprietor(-Denholme NBD13 4DN |Freehold 1250000 |
NYKT6611! 0/07. YORI450 HOPE! [E QF M#/Proprietor(-[15a, 15h an! Freehold 1450000 |
NYK52312: 4/11 YORI10) 0 |HOPE! L EOF roprietor(74, Moorfiell 512 3RS _[Freehold 1000000 |
WVIZRT ADT1ONNT AR VARZANNNNN THABET ANFIIRIE AE MADranriatarl liand and hi[RN12 ADN [Eraahald 190AAAAA
N
Cancel ‘ oK ‘

In this example, the axis names has not been correctly inferred. Whilst, one
can manually edit the axis names in the “Name” line, a quick shortcut is to
drag “Header” and drop it on “Name”:

The Date column is current parsed as strings, which not only will be sorted
incorrectly, but even if the data were in a YYYYMMDD format which is sorted
correctly, will not have a uniform temporal spacing. It is therefore important
to parse the Date column as temporal data, which is achieved by changing the
column type to “time”, and specifying a format string, which follows strftime
conventions with the addition of a quarter specifier (%Q).

If your temporal data is in the form Y*M*D*H*M*S, where * signifies any
sequence of non-digit characters, and the year, month, day, hour minutes, second
fields are regular integers in that order, then it suffices to use the blank format
string . If some of the fields are missing, eg minutes and seconds, then they will
be filled in with sensible defaults.

Columnar =i Separator|, =| Decimal Separator|. ~|Escape|\ ~|Quote[” =/ Merge Delimiters |~ Missing Valuejan | ColWidth[80
Duplicate Key Action|throwException | Horizontal dimension [2
Dimension = O = = = [u] = 5] = = i
Type|value fime fring fring fring fring fring fring fring Tring
Format %60/ %m/%
Name|Title numbe Date tric: Adminis trat Proprietor |Country/teilVariable Addre: Postcode [Tenure
Header|Title numbeYear Date __ fric rice (text [Proprietor |C 1 riable ddre: tcode [Tenure
[BL123682 1201 10/05/20TCITY. (‘FEEéﬂﬁ B 0 roprietor(|Apartmen ea: d éggg%
|DY389286 0 08/10/200°ICITY OF DFCITY OF DF. roprietor(:/| ea Farm, Ereehold
0: 07/0 CITY OF DEGITY OF DF roprie tor(-l and on the| Freehold 325(
% 1 Draplar laxt ot Erachold 1170000
1 04/1 Proprietor(6, Fylde Ave 3HL Freehold 0)
[HD264780 roprie torlCh AL3 6] Ereehold [367500
|K454045 0 Proprietor(:/St_Pauls HICT 121 Ereehold 30000
ILAB6ODA 1 Proprietor(115 Fpsom [FY5 3HS _|Freehald
NGL0?130Z 10/02/20 ATFR Proprietor(|Elat 91, 6 P, | easehold 11000000 |
NGL921308 1 Proprietor(‘|Flat 3, 6 Po. £a; d 11000000 |
NYK224023 2 0 roprietor(-Mitre Hous|HG1 5RX _|Freehold 1800000 |
04,20 XEQRDSEH E Proprietor(|Amey Plc, §0X14 4PP |Freehold 12500000 |
R 0 S V’]F’ﬁ_ﬁf E roprie tor(-Fosters | o 13 4DN |Freehold 450000 |
NYK12062] 12/2007 FSTYOR F M/IProprie torl- Denholme MNBD13 4ADN (Frashold 250000
NYK16611] 07/200 EST YOR!450 E roprie tor(:15a,_15b an; Freehold 1450000 |
NYKE2312:] 4/11/2001LFEDS EST YORI10 E roprietor(-74, MoorfielL§12 3RS [Freehold (1000000 |
WVICRT A2 119007 A10R HANTRDANEABNIWERT VAD 1500 E MADrAnriatarl liand and hillRN12 ADN [Eraahald 10AAAAA
N
cancel | ok |

Strftime formatted string consists of escape codes (with leading % charac-
ters). All other characters are treated as matching literally the characters of the
input. So to match a date string of the format YYYY-MM-DD HH:MM:SS+77Z
(ISO format), use a format string “AY-%m-%d %H:%M: %S+%Z”. Similarly, for quar-
terly data expressed like 1972-Q1, use “%Y-Q%Q”. Note that only %Y and %y
can be mixed with %Q (nothing else makes sense anyway).

Even in the current settings, you may still get a message “exhausted memory
— try reducing the rank”, or a similar message about hitting a 20% of physical

4.4. VARIABLES 65

Code Description
%a or %A | The name of the day of the week according to the current locale, in abbreviated form or the full nam
%b or %B | The month name according to the current locale, in abbreviated form or the full name.
%od Day of month in range 01 to 31
%H Hour in range 0 to 23
%l Hour in range 1 to 12
Y%om Month as a decimal number (01 to 12)
%M Minute in range 00 to 59
%Q Quarter (0=1st January, 1=1st March etc)
%p AM or PM
Yos Number of seconds since epoch (1st January 1970)
%S Seconds in range 00 to 59
Yoy Two digit year YY
%Y Four digit year YYYY
Yoz numerical timezone offset
%Z Timezone name
%% Literal % character

Table 4.1: Table of strftime codes

memory threshold. In some cases, “titles” and “addresses” might be pretty
much unique for each record, leading to a large, but very sparse hypercube. If
you remove those columns, as per

CGolumnar 11 Separator | | Decimal Separator. | Escape|\ «|Quote]” | Merge Delimiters| Missing Valuenan | Col Width [0]
Duplicate Key [| [
Dimension m] jm] X X x [u] X X X [m] X
Type! fime fring fring 1ring 1ring fring fring fring
Format %D/%m/ %},
Name| Date Distric Administrat Proprietor |Country/: Postcode [Tenure
Header| Title numbdYear Dat D] 1P Count I ddre tcod e
{BL123682 1201 ACIT etor(|Apartmen easehold
{DY389286 1200 |G etor(.| ea Farm, S| Ereehold
Eé? f?é 0. etor(.| and on th: Ereehold |1325(
0. etor(:/land on the Ereehold 17000
GM75; 1 etor(8 3HL Freehold 200000
[HD264780 etor(.Childwickbi [AL 3 6.1 Freehold
K45404 etor(: Pauls HICT1 21 Freehold 000 |
[LARGSS. etor(115, Fpsom H: Freehold 190
INGI 921304 4 etor((Flat 21,6 P 3T1 easehold 100!
INGLQ 4 LA etor(|Flat 3, 6 PolW2 3T| easehold (1000000 |
NYK 4%‘3:.‘ E etor(.[Mitre HousiHG1 5RX__[Freehold %ECCCD_
ON?73153 B E etor(:/Amey Plc, €l0X14 4PP |Freehold 0000 |
NYK1236072007 E etor(-[Fosters | 13 4DN IFreehold 1450000 |
NYK12967 | E etor(:\Denholme MBD13 4DN [Freehold 1250000 |
NYK16611 E etor-115a, 15b an Freehold 1450000
K E etor(.74, Moorfiell S12 3R Freehold 1001 0
WIVIERT 451 19007 /AR /00 TRBAN £ 12 and hitlRN12 ANN [Erashald 1900NANN
1
cancel | 0K |

then you may encounter the “Duplicate key” message. In this case, we
want to aggregate over these records, which we can do by setting “Duplicate
Key Action” to sum. After some additional playing around with dimensions to
aggregate over, we can get the data imported.

66 CHAPTER 4. REFERENCE

Columnar [Separator|, +| Decimal Separator . | Escape|\ | Quote[” | Merge Delimiters” Missing Value[nan .| Col Width[80 &
Duplicate Key Action T | Horizontal _‘
Dimension (m] (m] = [u] = [m] [m] X 5] [u] [m]
Type time tring tring 1ring
Format %d/%m/%Y
lame Date i Country/tel Tenure
Header|Title numbe/Year Date trict iministrat|Price (text [Proprietor [Country/telVariable Postcode |Tenure Price paid |

Bl 123682 1 5/201 Y OF BEICITYQF B AUSTRAL |/ Proprietor(’|Apartment |B: A d g 00!
DY389786 0 08/10/200 Y QF DFICITY QF DE PELANCIISLE QF Proprietor(|l ea Farm, SIDF24 9HW [Freehold 0
DY420477 200 07/0 Y OF DFIGITY OF DF 0 PF [|ISLE OF M Proprietor({l and on the Freehold 11325000
GM5 793581200 24/12/2004WIGA REATER M EMPHIS [ISLE OF M/ Proprietor(land on the Freehold 1170000

M75' 1 04/12/2014STOCKPOFGRFATER A200 A LUXF| Proprietor(16,_Fylde Av{SK8 3HI Ereehold 120000
HD?264780 05/1 ST Al BANSIHFRTFORD) ATHARIN/(BRITISH VIl Proprie tor({Childwickbi[AL 3 6.1 Freehold 136750
K45404 08/0 NTERBUIKEN TRIDENT ElISLF OF Mi[Proprietor(ISt Pauls HICT1 21 Freehold 1830000

| ABG554 18/1 “[RL ACKPOO/RL ACKPOC BOXSA _ [LUXEMBOL Proprietor(|15, Epsom [FY3 3H Ereehold 12000

NGL 0213022014 19/0 ICITY OF WIGREATER | 0__[7AWANCO [TURKS ANI[IProprietor(|Elat 21, 6 PIW? 311 easehold (1000000
NGL 921308 4 19/0: ACITY OF WIGRFATER | 0 AWANCO [TURKS Proprietor(Flat 3,6 Pal 3T1 ea; d 11000000 |

3 0 0 (IHARROGATINORTH YO 0 IBOSTON FIISIF OF Proprietor({Mitre HouslHGT 5R; Ereehold |180

N273153 8 04, {IVALE OF WIOXFORDSH) ITE NIISLE QF M/ Proprietor(|Amey Plc, ${0X14 4PP [Freehold 25000
[WYK17360 07/200 [BRADFORCIWFST YORI 4. ISLE QF M/[Proprietor(lFosters | 0UBD13 ADN |[Freehold 450000 |
[WYK12962] 2/12/2005BRADFORDIWFST YOR E ISLF OF Proprietor({Denholme IBD13 4DN |Freehold |25 0
MYKI6611! 0/0 ADFORDIWEST YORI4. ISLF QF Proprietor({15a,_15h an| Ereehold 1450000
WYK5231 4/11/200711 FED \WEST YORIT ISLE OF Pronrietar(174 Moarfiell S12 3R! Freehold 110 0

|

4.4.6 Duplicate keys

In a hypercube, data is indexed by a list of indices, collectively known as a
key. The indices may be strings, integers or date/time values. If more than one
value exists in the CSV file for a given key, Minsky throws a “Duplicate key”
exception. This exception gives you the option of writing a report, which is
basically a sorted version of the original CSV file, with the errors listed at the
beginning. You can open this report in a spreadsheet to see if data needs to be
corrected or removed.

In the case where the data is correct, but there are still duplicate keys, such
as the example in the previous section, the duplicate keys may be aggregated
over by setting the “Duplicate Key action” option.

4.5 Wires

Wire represent the flow of values from one operation to the next. To add a wire
to the canvas, click on the output port of an operation or variable (right hand
side of the icon in its initial unrotated orientation), and then drag it towards
an input port (on the left hand side of an unrotated icon). You can’t connect
an operator to itself (that would be a loop, which is not allowed, unless passing
through an integral), nor can an input port have more than one wire attached,
with the exception of +/— and x /=, where the multiple wires are summed or
multiplied, respectively, and similarly max/min.

Wires can be bent by dragging the blue dots (“handles”). Every time a
handle is dragged out of a straight line with its neighbours, new handles appear
on either side. Handles can be removed by double-clicking on them.

4.6 Tensor values
Variables may have tensor values, or sets of data. Different tensors are sorted

by rank. For example, a tensor of rank 0 may appear as a single number, let’s
refer to it as x. A tensor of rank 1 may appear as a sequence of numbers, let’s

4.6. TENSOR VALUES 67

say (zzzz). Rank 2 means a tensor appears as a 2D sequence of numbers, for
example:

8 8 8
8 8 8
8 8 8

A tensor of rank 3 will appear as a three-dimensional cube, rank 4 as a
four-dimensional hypercube, and so on. Two ways of getting tensor values
into Minsky are via tensor-valued initial conditions (7 or by importing a
CSV file into a parameter (§4.4.5). Scalar operations are extended to operating
elementwise over tensors, and a number of operations exist for operating on
tensors (§4.2)).

When two or more tensors are combined with a binary operation (such as
addition or multiplication), they must have the same rank. For example, two
tensors of rank 2 can be multiplied together, but a tensor of rank 2 and a tensor
of rank 3 cannot. They may have differing dimensions, which means the values
within each tensor may not necessarily match up 1-to-1 exactly. To understand
what happens when a given dimension is mismatched requires understanding
the concept of an x-vector.

When Minsky is given tensor values, it sorts the values within each tensor by
corresponding dimensions. For example, a rank 2 tensor would have its values
sorted into two sets of data. This data can be in the form of numbers, dates
(time values), or strings. Minsky will then look at cross-sections of the datasets
in order to process the values within. When the dimensions of two tensors
match up, for example two rank 2 tensors, the corresponding cross-sections of
both tensors should also match up. When they don’t, a weighted interpolation
of the corresponding values is taken. This involves using an x-vector.

An x-vector is a vector of real values, strings or date/time values. If no
x-vector is explicitly provided, then implicitly it consists of the the values
(0,...,n; — 1), where n; is the dimension size of axis ¢ of the tensor.

For example, if the first tensor consists of three elements (xg, 1, z2) and the
second consist of a number of different elements that roughly correspond to the
same three elements, these can be added together. The x-vector starts with the
first tensor’s value of (o) and looks for a matching value in the second tensor.
If it can’t find a direct match, it will search for nearby values which roughly
correspond. It can then take those values and interpolate the corresponding
value based on where in the tensor it appears. This is weighted, so say there are
four values nearby, the program will average those out and find where a value
in the middle of those four values would appear, and what that hypothetical
value would be. To take another example:

Suppose the first tensor was a vector (zg,x1) and had an x-vector (1,3) and
the second tensor (yo,y1,y2) had an x-vector (0,2,3), then the resulting tensor
will be (xo + 0.5(yo + y1), 21 + y2). If the x-vector were date/time data, then
the tensor values will be interpolated according to the actual time values. If
the first tensor’s x-vector value lies outside the second tensor’s x-vector, then it

68 CHAPTER 4. REFERENCE

doesn’t result in a value being included in the output. The resultant x-vector’s
range of values is the intersection of input tensors’ x-vector ranges.

If both tensor had string x-vectors, then the resultant tensor will only have
values where both input tensors have the same string value in their x-vectors.
In the above case, where the x-vectors were ('1’,’3) and (’0’,’2’,’3") the resulting
tensor will be the scalar z; + yso.

It goes without saying that the type of the x-vector for each axis must also
match.

4.7 Groups

Grouping gives the capability to create reusable modules, or subroutines that
can dramatically simplify more complicated systems. Groups may be created
in the following ways:

e by lassoing a number of items to select them, then selecting “group” from
the canvas context menu, or the edit menu.

e by pasting the selection. You may “ungroup” the group from the context
menu if you don’t desire the result of the paste to be a group.

e by copying another group
e by inserting a Minsky file as a group

Zooming in on a group allows you see and edit its contents. Groups may
be nested heirarchically, which gives an excellent way of zooming in to see the
detail of a model, or zooming out to get an overview of it. The group context
menu item “Zoom to display” zooms the canvas in just enough for the group’s
contents to be visible.

You may also select “Open in canvas” from the context menu. This replaces
the current canvas contents with the contents of the group, allowing you to edit
the contents of the group directly without the distractions of the rest of the
model. Select “Open master group” to return to the top level group occupying
the canvas.

Around the edges of a group are input or output variables, which allow one
to parameterise the group. One can drag a variable and dock it in the I/O area
to create a new input or output for the group.

When creating a group, or dragging a variable or operation into or out of a
group, if a wire ends up crossing the group boundary, a new temporary variable
is added as an I/O variable.

Variable names within groups are locally scoped to that group. That means
that a variable of the same name outside the group refers to a different entity
completely. One can refer to variables outside the current scope by prepending
the variable name with a ‘>. This refers to a local variable within an outer
scope, going all the way to global scope if no such variable exists. In this way,
two groups can share a variable reference to a variable by using the ‘:” prefix,

4.8. PLOT WIDGET 69

and you can limit the scope of the shared variable by placing a local variable of
the same name in an outer group that both groups are contain within.

A group can also be exported to a file from the context menu. This allows
you to build up a library of building blocks. There is a github project “minsky-
models” allowing people to publish their building blocks and models for others
to use. In the future, we hope to integrate Minsky with this github repository,
allowing even more seamless sharing of models.

4.8 Plot widget

A plot widget embeds a dynamic plot into the canvas. Around the outside of
the plot are a number of input ports that can be wired.

\xﬂ.l 7
> -
g
»2
PB <
Qhl A A AbA I 4

left hand edge Up to 4 quantities can be plotted on the graph simultaneously,
with line colour given by the colour of the input port

right hand edge Another 4 quantities can be added to the plot. These are
shown on a different scale to the left hand inputs, allowing very different
magnitudes to be compared on the one plot.

bottom edge Quantities controlling the x-coordinates of the curves. The
colours match up with the colour of the pen being controlled.

70 CHAPTER 4. REFERENCE

»

A

0

v

x
5‘ A A 0

If only one bottom port is connected, then that controls all pens simulta-
neously, and if no ports are connected, then the simulation time is used
to provide the z coordinates

corners Corner ports control the scale. You can wire up variables controlling
minimum and maximum of the x, y and right hand y axes. If left unwired,
the scales are determined automatically from the data. This can be used,
for example, to implement a sliding window graph

4.9. SHEET WIDGET 71

»

4.9 Sheet Widget

The Sheet widget displays input data as a number, rather than as a 2D graph, as
in the case of the plot widget. To use the Sheet widget, simply wire a variable
or other item on your canvas to the left-hand side of the sheet widget box.
This will diplay the input data as a number. Note that only one wire can be
connected to a sheet, as the sheet can only display a single input value.

The sheet widget can also display rank 0, 1 and rank 2 tensors. These ranks
are single values, a string of values, or a 2D matrix of values, respectively. For
example, if you create a parameter, and set the initial condition to rand(3,5)
(for reference, see section (§4.4.3))), you can wire that into a sheet. The sheet
will then diplay the data in a grid display within the widget box.

4.10 Note Widget

Notes allow arbitrary text to be placed on the canvas for explanatory purposes.
Anything that can be entered on the keyboard can be placed here, including
unicode characters, and LaTeX formatting is supported. A note widget, like all
canvas items, allow short additional tooltips to be specified. It is also possible
to annotate an ordinary block with some text that is accessed through the edit
menu, or as a tooltip.

72 CHAPTER 4. REFERENCE

4.11 Godley Tables

Godley tables describes sets of financial flows from the point of view of a particu-
lar economic agent, such as a bank. The columns of the table represent accounts
(possibly aggregated), which are treated as integration variables by the system.
Accounts may be assets, liabilities or equities. Assets may appear as liabilities
in another agent’s Godley table, and vice versa, with the sense of the financial
flows treated oppositely (a credit flow increasing the asset of one entity will
appear as a debit flow, increasing the value of a liability). Transfers between ac-
counts should satisfy the accounting equation (Assets-Liabilities-Equities = 0).
So if the transfer is between an asset and a liability, then it should appear with
the same sign (both positive or both negative), otherwise between two accounts
of the same type, or between a liability and an equity, the terms should have
opposite signs.

Instead of signed flows, one can optionally use CR and DR prefixes, as
specified in the options panel. Each row of the table should have have one CR
entry, and one DR entry. The row sum column should be zero if it is done
correctly.

The first row specifies the stock variables, after which follow the flow rows.
Usually, the row marked “Initial Conditions” comes next, but may be placed
in any position. These specify the initial conditions of the stock variables, and
may refer to a multiple of another variable, just like the [initial condition field]
or just be a numerical value.

Finally come the flows. The first column is a simple textual label (the phrase
“Initial Conditions”, regardless of capitalisation, is a reserved phrase for setting
stock variable initial conditions) identifying the flow. The flows themselves
are written as a numerical multiplier times a flow variable. For example, if you
wanted to transfer an amount between the asset and liability column, you might
write “Amount” in both columns, which would satisfy the equation A-L-E=0.
It would also be possible to write “2Amount” in the asset column, along with
“Amount” in both the Liability and Equity columns. This would still satisfy
A-L-E=0.

The Godley table also shows the value of the entered variable, displayed
within the table. For example, if you set “Amount” to equal the value of system
time, on opening the Godley table, wherever you entered “Amount” in the table
the cell would show “Amount = 0.00” if the system time was set to 0.00. This
provides a helpful tool for displaying the value of the variable at that point in
the simulation. This feature can be enabled or disabled in the preferences panel.

4.12 Context Menu

All canvas items have a context menu, which allow a variety of operations to be
applied to the canvas item. Common context menu items are explained here:

Help bring up context specific help for the item

4.12. CONTEXT MENU 73

Description Attach an annotation to the item. This is only visible by selecting
the description item from the context menu, although whatever is set as
the “Short Description” will also appear as a tooltip whenever the mouse
hovers over the item.

Port values When running a simulation, you can drill down into the actual
values at the input and output ports of the variable or operation, which
is a useful aid for debugging models.

Edit set or query various attributes of an item. This function can also be
accessed by double clicking on the item. (Plot widgets behave slightly
differently).

Copy Creates a copy of an item, retaining the same attributes of the original.
This is very useful for creating copies of the same variable to reduce the
amount of overlapping wiring (aka “rats nest”) in a model.

Flip actually rotates an object through 180°. You can specify aribtrary rota-
tions of objects through the edit menu.

Raise/Lower Raise and lower the canvas items relative to each other. You
may need to do this if a large item such as a Godley table or plot is
obscuring a wire, making it hard to access the wire’s context menu or
handles,

Browse object gives a low level drilldown of the internal C++ object this
canvas item represents. It is perhaps more of interest to developers.

Delete delete the object.
Item specific context menu items:
variables, parameters and constants

Slider add a slider control to a variable. This is most effective for con-
trolling parameters and constants, but can also be used to control
inputless variables.

Add integral attach an integration operation, and convert the variable
into an integral type
integrals
Copy Var copy just the integration variable, not the integration opera-
tion

Toggle Var Binding Normally, integrals are tightly bound to their vari-
ables. By toggling the binding, the integral icon can then be moved
independently of the variable it is bound to.

Godley tables

74 CHAPTER 4. REFERENCE
Open Godley Table opens a spreadsheet to allow financial flows defin-
ing the Godley table to be entered or modified.
Resize Godley Table allows the icon to be resized.
Edit/Copy var allows individual stock and flow variables to be copied
or edited.
Export to file export table contents as either CSV data, or as a LaTeX
table, for import into other software.
Groups

Zoom to Display Zoom the canvas sufficiently to see the contents of the
group.

Resize Resize the group icon on the canvas.

Save group as Save the group in it’s own Minsky file.

Flip contents Rotate each item within the group by 180°

Ungroup Ungroup the group, leaving it’s contents as icons on the canvas.

contentBounds Draws a box on the canvas indicating the smallest bound-
ing box containing the group items.

Plot Widgets

Expand By double-clicking, or selecting “Expand” from the context menu,
a popup window is created of the plot, which can be used examine
the plotting in more detail.

Resize Allows you to resize the plot icon on the canvas

Options Customize the plot by adding a title, axes labels and control
the number of axis ticks and grid lines on the detailed plot. You can
also add a legend, which is populated from the names of variables
attached to the plot.

4.13 Canvas background

The canvas is not simply an inert place for the canvas items to exist. There is
also a background context menu, giving access to the edit menu functionality
such as cut/copy/paste, and also keyboard entry.

The following keystrokes insert an operation

+ add
subtract
* multiply
/ divide

~ pow

& integral

= Godley table

@ plot

start a text comment, finish with return

4.14. DIMENSIONAL ANALYSIS 75

Typing any other character, then return will insert an operation (if the name
matches), or otherwise a variable with that name.

4.14 Dimensional Analysis

Dimensional analysis is the idea of attaching units of measurement (eg metre or
second) to the quantities being computed. It provides an additional constraint
that the system must satisfy, reducing the chance of wiring errors. Two different
units being added together will throw up an error - you cannot add 2 metres
to 3 kilograms. But it should be possible add 2 metres to 3 feet, and get the
correct answer. You may need to explicitly add a multiply operation to convert
from one unit to another, for example, dividing the 3 feet by 3.281 before adding
it to the 2 metres, providing a total of 2.914 meters.

Using Dimensional Analysis in Minsky

To attach units to quantities in Minsky, you use the units field of the vari-
able/parameters/constants edit dialog box. Each word typed in this box de-
scribes a separate unit. “ followed by an integer is used to represent a power.
Finally, a single “/” indicates that the following units are on the denomina-
tor, dividing the first set of units by the second. So to represent the unit of
acceleration, you can equivalently type all of the following:

e m/s"2

e m/s s

o m/s"-2

Or spelling it out in full:

e metre/second”2
e metre second”-2

e metre / second second

Note that metre and m are distinctly different units in Minsky.

Consider the network introduced in the New to System Dynamics section
of the Minsky manual. For GDP, one could enter $/year for the units. Labor
Productivity should be expressed in terms of $ per person year. If the system
does not accept $/person year, you can enter this as $ person~-1 year~-1.
Finally, Population has units of person. Press reset, and the Workers variable
automatically has units of person, and EmpRate is dimensionless.

All function objects require dimensionless inputs. You can use dimensional
analysis to prevent incorrectly feeding a degree measurement into a sin, by
requiring them to be multiplied by a radiansPerDegree parameter.

76 CHAPTER 4. REFERENCE

4.15 Bookmarks

Bookmarks are a useful feature for saving the current position and zoom of the
canvas, to be able to come back to that part of the canvas later. This helps
managing more complicated models. To create a new bookmark, click on the
“Bookmark” tab in the top left-hand corner (in-between “Edit” and “Insert”)
and select “Bookmark this position”. The program will provide a dialogue
box to enter in a name for the new bookmark. After creating the bookmark,
all user-created bookmarks can be seen in the Bookmarks menu. To delete
a bookmark, simply select “Delete” from the Bookmarks menu and select the
desired bookmark. To open an existing bookmark, select one from the menu.

Chapter 5

User defined functions

Much of this chapter is exerpted from |exprtk’s read.tzt file

5.1 Introduction

The C++ Mathematical Expression Toolkit Library (ExprTk) is a simple to
use, easy to integrate and extremely efficient run-time mathematical expression
parsing and evaluation engine. The parsing engine supports numerous forms of
functional and logic processing semantics and is easily extensible.

With Minsky’s user defined functions, expressions can refer to Minsky vari-
ables accessible from the current scope (ie local Minsky variables will hide global
variables), and also parameters declared as part of the function name. One can
also call other user defined functions, which is the only way a user defined func-
tion with more than 2 parameters can be used. For 0-2 parameters, user defined
functions can be wired into a Minsky computation.

ExprTk identifiers (such as variable names and function names) consist of
alphanumeric characters plus '’ and ’.”. They must start with a letter. Minsky
is reserving the underscore and full stop to act as an escape sequence, in order
to refer to the full range of possible Minsky variable identifiers, including all
unicode characters. This section will be updated once that feature is in place
— for now, please avoid using those characters in identifiers.

5.2 Capabilities

The ExprTk expression evaluator supports the following fundamental arithmetic
operations, functions and processes:
Types: Scalar, Vector, String

Basic operators: +, -, *, /, %,

Assignment: :=, +=, -=, *=, /=, Y=

7

https://github.com/ArashPartow/exprtk/blob/master/readme.txt
https://www.partow.net/programming/exprtk/index.html

78 CHAPTER 5. USER DEFINED FUNCTIONS

Equalities & Inequalities: =, ==, <>, !=, <, <=, >, >=

Logic operators: and, mand, mor, nand, nor, not, or, shl, shr, xnor, xor, true,
false

Functions: abs, avg, ceil, clamp, equal, erf, erfc, exp, expml, floor, frac, log,
log10, loglp, log2, logn, max, min, mul, ncdf, nequal, root, round, roundn,
sgn, sqrt, sum, swap, trunc

Trigonometry: acos, acosh, asin, asinh, atan, atanh, atan2, cos, cosh, cot,
csc, sec, sin, sinc, sinh, tan, tanh, hypot, rad2deg, deg2grad, deg2rad,
grad2deg

Control structures: if-then-else, ternary conditional, switch-case, return-statement
Loop statements: while, for, repeat-until, break, continue
String processing: in, like, ilike, concatenation

Optimisations: constant-folding, simple strength reduction and dead code
elimination

Calculus: numerical integration and differentiation

5.3 Example expressions

The following is a short listing of infix format based mathematical expressions
that can be parsed and evaluated using the ExprTk library.

e sqrt(1 - (3 / x°2))

e clamp(-1, sin(2 * pi * x) + cos(y / 2 * pi), +1)

e sin(2.34e-3 * x)

e if (((x[2] + 2) == 3) and ((y + 5) <=9),1 +w, 2/ 2)

e inrange(-2,m,+2) == if(({-2 <= m} and [m <= +2]),1,0)

o ({1/13%[1/21+(1/3))-{1/4}"[1/51+(1/6)-({1/7}+[1/8]*(1/9))
e a *x exp(2.2 / 3.3 xt) +c

ez :=x + sin(2.567 * pi / y)

e u :=2.123 x {pi * z} / (w := x + cos(y / pi))
e 2x + 3y +4z + bw ==2 x x +3 xy+4*xz+5x*xw
e 3(x +y) / 2.9+ 1.234e+12 == 3 x (x + y) / 2.9 + 1.234e+12

e (x +y)3.3+1/45==1[x+y] *3.3+1/4.5

5.4. COPYRIGHT NOTICE 79

o (x +ylildz+ 1.1/ 2.7 == (x +yl[i]l) xz + 1.1 / 2.7

(sin(x / pi) cos(2y) + 1) == (sin(x / pi) * cos(2 *x y) + 1)

75x~17 + 25.1x"5 - 3bx"4 - 15.2x"3 + 40x"2 - 156.3x + 1

(avg(x,y) <= x+y ?7x -y :x *y)+2.345 % pi / x

e while (x <= 100) { x -= 1; }

e x <= ’abcl123’ and (y in ’AString’) or (’1x2y3z’ != z)

e ((x + ’abc’) like ’#123%’) or (’al23b’ ilike y)

sgn(+1.2°3.4z / -5.6y) <= {-7.8"9 / -10.11x }

5.4 Copyright notice

Free use of the C4++ Mathematical Expression Toolkit Library is permitted
under the guidelines and in accordance with the most current version of the
MIT License

http://www.opensource.org/licenses/MIT

80

CHAPTER 5. USER DEFINED FUNCTIONS

5.5 Built-in operations & functions

5.5.1 Arithmetic & Assignment Operators

OPERATOR

DEFINITION

Addition between x and y. (eg: x + y)

Subtraction between x and y. (eg: x - y)

Multiplication between x and y. (eg: x * y)

Division between x and y. (eg: x / y)

Modulus of x with respect to y. (eg: x % y)

Y. (eg: x " y)

Assign the value of x to y. Where y is either a variable or vector
type. (eg: y := x)

Increment x by the value of the expression on the right hand
side. Where x is either a variable or vector type. (eg:
x += abs(y - 2))

Decrement x by the value of the expression on the right hand
side. Where x is either a variable or vector type. (eg:
x[i] -= abs(y + 2))

Assign the multiplication of x by the value of the expression on
the righthand side to x. Where x is either a variable or vector
type. (eg: x *= abs(y / z))

Assign the division of x by the value of the expression on the
right-hand side to x. Where x is either a variable or vector type.
(eg: x[i + j1 /= abs(y * 2z))

Assign x modulo the value of the expression on the right hand
side to x. Where x is either a variable or vector type. (eg:
x[2] Y=y "~ 2)

5.5.2 [Equalities & Inequalities

OPERATOR | DEFINITION
==or = True only if x is strictly equal to y. (eg: x == y)
<>or = True only if x does not equal y. (eg: x <> yorx !=y)
< True only if x is less than y. (eg: x < y)
<= True only if x is less than or equal to y. (eg: x <= y)
> True only if x is greater than y. (eg: x > y
>= True only if x greater than or equal to y. (eg: x >= y)

5.5. BUILT-IN OPERATIONS & FUNCTIONS 81

5.5.3 Boolean Operations

OPERATOR | DEFINITION
true True state or any value other than zero (typically 1).
false False state, value of exactly zero.
and Logical AND, True only if x and y are both true. (eg: x and y)
mand Multi-input logical AND, True only if all inputs are
true. Left to right short-circuiting of expressions. (eg:
mand(x >y, z < w, u or v, w and X))
mor Multi-input logical OR, True if at least one of the inputs
are true. Left to right short-circuiting of expressions. (eg:
mor(x >y, z < w, uor v, w and x))
nand Logical NAND, True only if either x or y is false. (eg: x nand y)
nor Logical NOR, True only if the result of x or y is false (eg:
X nor y)
not Logical NOT, Negate the logical sense of the input. (eg:
not(x and y) == x nand y)
or Logical OR, True if either x or y is true. (eg: x or y)
xor Logical XOR, True only if the logical states of x and y differ.
(eg: x xor y)
Xnor Logical XNOR, True iff the biconditional of x and y is satisfied.
(eg: x xnor y)
& Similar to AND but with left to right expression short circuiting

optimisation. (eg: (x & y) == (y and x))
Similar to OR but with left to right expression short circuiting
optimisation. (eg: (x | y) == (y or x))

82

CHAPTER 5. USER DEFINED FUNCTIONS

5.5. BUILT-IN OPERATIONS & FUNCTIONS 83

5.5.4 General Purpose Functions

FUNCTION | DEFINITION
abs Absolute value of x. (eg: abs(x))
avg Average of all the inputs. (eg:
avg(x,y,z,w,u,v) == (x +y+z+w+u+v)/6)
ceil Smallest integer that is greater than or equal to x.
clamp Clamp x in range between r0 and rl, where r0 | rl. (eg:
clamp(r0,x,rl))
equal Equality test between x and y using normalised epsilon
erf Error function of x. (eg: erf(x))
erfc Complimentary error function of x. (eg: erfc(x))
exp e® (eg: exp(x))
expmi e~ where x is very small. (eg: expml(x))
floor Largest integer that is less than or equal to x. (eg: floor(x))
frac Fractional portion of x. (eg: frac(x))
hypot V2?2 +y? (eg: hypot(x,y) = sqrt(x*x + y*y))
iclamp Inverse-clamp x outside of the range r0 and rl. Where 10 j rl.
If x is within the range it will snap to the closest bound. (eg:
r0 if z <70
iclamp(r0,x,rl) = x if r0<z<rl)
rl if z>rl
inrange In-range returns ’true’ when z is within the range [rg, r1]. Where
ro < ri. (eg: inrange(r0,x,r1))
log Natural logarithm Inz. (eg: log(x))
logl0 logqp z. (eg: 1logl0(x))
loglp In(1 + z), where z is very small. (eg: loglp(x))
log2 log, x. (eg: log2(x))
logn log,, «, where n is a positive integer. (eg: logn(x,8))
max Largest value of all the inputs. (eg: max(x,y,z,w,u,v))
min Smallest value of all the inputs. (eg: min(x,y,z,w,u))
mul Product of all the inputs. (eg:
mul(x,y,z,Ww,u,v,t) == (X * y * 2 * W *x u * Vv * t))
ncdf Normal cumulative distribution function. (eg: ncdf (x))
nequal Not-equal test between x and y using normalised epsilon
pow a¥. (eg: pow(x,y) == x " y)
root {/x, where n is a positive integer. (eg: root(x,3) == x~(1/3))
round Round z to the nearest integer. (eg: round(x))
roundn Round z to n decimal places (eg: roundn(x,3)) where n > 0 is
an integer. (eg: roundn(1.2345678,4) == 1.2346)
sgn Sign of x, —1 where x < 0, +1 where & > 0, else zero. (eg:
sgn(x))
sqrt vz, where © >= 0. (eg: sqrt(x))
sum Sum of all the inputs. (eg:
sum(x,y,z,w,u,v,t) == (x +y+z+w+u+v+t))
swap
<=> Swap the values of the variables x and y and return the current
value of y. (eg: swap(x,y) or x <=> y)
trunc Integer portion of x. (eg: trunc(x))

84

CHAPTER 5. USER DEFINED FUNCTIONS

5.5.5 Trigonometry Functions

FUNCTION

DEFINITION

acos
acosh

asin
asinh

atan
atan2
atanh

cos
cosh
cot
csc
sec
sin
sinc
sinh
tan
tanh
deg2rad
deg2grad
rad2deg
grad2deg

Arc cosine of x expressed in radians. Interval [—1,+1] (eg:
acos(x))

Inverse hyperbolic cosine of x expressed in radians. (eg:
acosh(x))

Arc sine of x expressed in radians. Interval [—1,+1] (eg:
asin(x))

Inverse hyperbolic sine of x expressed in radians. (eg:
asinh(x))

Arc tangent of x expressed in radians. Interval [—1,+1] (eg:
atan(x))

Arc tangent of (z/y) expressed in radians. [—m,+7] (eg:
atan2(x,y))

Inverse hyperbolic tangent of x expressed in radians. (eg:
atanh(x))

Cosine of . (eg: cos(x))
Hyperbolic cosine of z. (eg: cosh(x))

Cotangent of z. (eg: cot(x))

Cosecant of z. (eg: csc(x))

Secant of x. (eg: sec(x))

Sine of z. (eg: sin(x))

Sine cardinal of z. (eg: sinc(x))

Hyperbolic sine of z. (eg: sinh(x))

Tangent of z. (eg: tan(x))

Hyperbolic tangent of x. (eg: tanh(x))

Convert z from degrees to radians. (eg: deg2rad(x))
Convert z from degrees to gradians. (eg: deg2grad(x))
Convert z from radians to degrees. (eg: rad2deg(x))
Convert x from gradians to degrees. (eg: grad2deg(x))

5.5. BUILT-IN OPERATIONS & FUNCTIONS 85

5.5.6 String Processing

FUNCTION

=) ==7 !=7 <>7 <=7 >=7 <) >

in

like

ilike

[r0:r1]

DEFINITION
All common equality/inequality operators are applicable to
strings and are applied in a case sensitive manner. In

the following example x, y and z are of type string.
not((x <= ’AbC’) and (’1x2y3z’ <> y)) or (z == x))
True only if z is a substring of y. (eg: x in y or
’abc’ in ’abcdefgh’)

True only if the string x matches the pattern y. Available
wildcard characters are ‘¥’ and ‘?” denoting zero or more
and zero or one matches respectively. (eg: x like y or
’abcdefgh’ like ’a?d*h’)

True only if the string x matches the pattern y in a case in-
sensitive manner. Available wildcard characters are "*” and *?’
denoting zero or more and zero or one matches respectively. (eg:
x ilike y or ’alB2c3D4e5F6g7H’ ilike ’a?d*h’)

The closed interval [r0,71] of the specified string. eg: Given a
string x with a value of ’abcdefgh’ then:

(eg:

1. x[1:4] == ’Dbcde’

2. x[:5] == x[:10 / 2] == ’abcdef’
3. x[2 + 1:] == x[3:] =="defgh’

4. x[:] == x[:] == ’abcdefgh’

5. x[4/2:3+2] == x[2:5] == ’cdef’

Note: Both r0 and rl are assumed to be integers, where r0 j=
rl. They may also be the result of an expression, in the event
they have fractional components truncation will be performed.
(eg: 1.67T — 1)

86

CHAPTER 5. USER DEFINED FUNCTIONS

FUNCTION | DEFINITION
1= Assign the value of x to y. Where y is a mutable string or string
range and x is either a string or a string range. eg:
l.y :=x
2.y := ’abc’
3.y = x[:1 + j]
4.y := 20123456789’ [2:7]
5.y := 0123456789’ [2i + 1:7]
6. y := (x := 20123456789’ [2:7])
7. yli:j] = x
8. y[i:j]l := (x + ’abcdefg’[8 / 4:5]) [m:n]
Note: For options 7 and 8 the shorter of the two ranges will
denote the number characters that are to be copied.
+ Concatenation of x and y. Where x and y are strings or string
ranges. eg
l.x+y
2. x + ’abc’
3. x + yl:1i + j]
4. x[i:j] + y[2:3] + 01234567897 [2:7]
5. ’abc’ + x +y
6. ’abc’ + 21234567’
7. (x + ’alB2c3D4’ + y)[i:2j]
+= Append to x the value of y. Where x is a mutable string and y
is either a string or a string range. eg:
l.x +=y
2. x += ’abc’
3. x += y[:1 + j] + ’abc’
4. x += ’0123456789° [2:7]
<=> Swap the values of x and y. Where x and y are mutable strings.

(eg: x <=>y)

5.5. BUILT-IN OPERATIONS & FUNCTIONS 87

FUNCTION

DEFINITION

(]

The string size operator returns the size of the string being
actioned. eg:

1. ’abc’[] ==
2. var max_str_length := max(s0[],s1[],s2[],s3[]

3. CCabc’ + ’xyz’)[] ==

=~

. (Cabe’ + ’xyz’)[1:4]1)[] ==

88

CHAPTER 5. USER DEFINED FUNCTIONS

5.5. BUILT-IN OPERATIONS & FUNCTIONS 89

5.5.7 Control Structures

STRUCTURE
if

if-else

switch

while

DEFINITION

If x is true then return y else return z.eg:
1. if (x, y, z)
2. if ((x + 1) > 2y, z+ 1, w/ v)
3. if (x > y) z;

4. if (x <= 2%y) { z + w };

The if-else/else-if statement. Subject to the condition branch
the statement will return either the value of the consequent or
the alternative branch. eg:

1. if (x > y) z; else w;
2. if (x > y) z; else if (w != uw) v;
3.if (x<y) {z; w+1; } else u;

4. if ((x '=y) and (z > w))

{
y := sin(x) / u;
z :=w+ 1;
}
else if (x > (z + 1))
{
w o= abs (x - y) + z;
u:=(x+1) >2y 7 2u : 3u;
}

The first true case condition that is encountered will determine
the result of the switch. If none of the case conditions hold true,
the default action is assumed as the final return value. This is
sometimes also known as a multi-way branch mechanism. eg:

switch

{
case x > (y +2) : 2 xx / abs(y - 2);
case x < 3 : sin(x + y);
default 1 + x5

}

The structure will repeatedly evaluate the internal statement(s)
'while’ the condition is true. The final statement in the final
iteration will be used as the return value of the loop. eg:

while ((x -= 1) > 0)
{

y 1= x + z;

W= ou+y;

}

90

CHAPTER 5. USER DEFINED FUNCTIONS

FUNCTION DEFINITION
repeat/until | The structure will repeatedly evaluate the internal statement(s)
‘until” the condition is true. The final statement in the final
iteration will be used as the return value of the loop. eg:
repeat
y :=x + z;
wi=u+t+y;
until ((x += 1) > 100)
for The structure will repeatedly evaluate the internal statement(s)
while the condition is true. On each loop iteration, an ’incre-
menting’ expression is evaluated. The conditional is manda-
tory whereas the initialiser and incrementing expressions are
optional. eg:
for (var x := 0; (x < n) and (x !=y); x += 1)
{
y:=y+x/2 - z;
Woi=u+y;
}
break/break[] | Break terminates the execution of the nearest enclosed loop,
allowing for the execution to continue on external to the loop.
The default break statement will set the return value of the loop
to NaN, where as the return based form will set the value to that
of the break expression. eg:
while ((i += 1) < 10)
{
if (i < 5)
joo=1i+2;
else if (i % 2 == 0)
break;
else
break[2i + 3];
}
continue Continue results in the remaining portion of the nearest enclos-

ing loop body to be skipped. eg:

for (var i := 0; i < 10; i += 1)

{
if (i < 5)
continue;
j =1+ 2;

}

5.5. BUILT-IN OPERATIONS & FUNCTIONS 91

FUNCTION | DEFINITION
return Return immediately from within the current expression. With
the option of passing back a variable number of values (scalar,
vector or string). eg:
1. return [1];
2. return [x, ’abx’];
3. return [x, x + y,’abx’];
4. return [];
5. if (x <y)
return [x, x - y, ’result-setl’, 123.456];
else
return [y, x + y, ’result-set2’];
7 Ternary conditional statement, similar to that of the above de-
noted if-statement. eg:
l.x?2y:z
2.x+1>2y?2z+1: (w/v)
3. min(x,y) >z ? (x<y+1) ?7x:y3: (w*xv)

- Evaluate each sub-expression, then return as the result the value
of the last sub-expression. This is sometimes known as multiple
sequence point evaluation. eg:

A :=x+1, j:=y/ z, k :=sin(w/w) == (sin(w/u)
i :=x+1; j =y / z; k :=sin(w/w} == (sin(w/uw)
[x] Evaluate any consequent for which its case statement is true.
The return value will be either zero or the result of the last
consequent to have been evaluated. eg:
[*]
{
case (x + 1) > (y - 2) :x =2z / 2+ sin(y / pi
case (x + 2) < abs(y + 3) : w / 4 + min(5y,9);
case (x + 3) == (y * 4) :y := abs(z / 6) + Ty;
}

[The vector size operator returns the size of the vector being

actioned. eg:
1. v[]
2. max_size := max(vO[]l,v1[],v2[],v3[])

~—

92 CHAPTER 5. USER DEFINED FUNCTIONS

Note: In the tables above, the symbols x, y, z, w, u and v where appropriate
may represent any of one the following:

1. Literal numeric/string value
2. A variable

A vector element

A vector

A string

A A o

An expression comprised of [1], [2] or [3] (eg: 2 + x /vec[3])

5.6 Fundamental types

ExprTk supports three fundamental types which can be used freely in expres-
sions. The types are as follows:

Scalar Type The scalar type is a singular numeric value. The underlying
type is that used to specialise the ExprTk components (float, double, long
double, MPFR et al).

Vector Type The vector type is a fixed size sequence of contiguous scalar
values. A vector can be indexed resulting in a scalar value. Operations
between a vector and scalar will result in a vector with a size equal to that
of the original vector, whereas operations between vectors will result in a
vector of size equal to that of the smaller of the two. In both mentioned
cases, the operations will occur element-wise.

String Type The string type is a variable length sequence of 8-bit chars.
Strings can be assigned and concatenated to one another, they can also
be manipulated via sub-ranges using the range definition syntax. Strings
however can not interact with scalar or vector types.

	Introduction
	New to system dynamics?
	Experienced in system dynamics?

	Getting Started
	System requirements
	Getting help
	Components of the Program
	Menu
	Record/Replay Buttons
	Run Buttons
	Speed slider
	Zoom buttons
	Simulation time
	Wiring and Equations Tabs
	Design Icons
	Design Canvas
	The Panopticon
	Wires

	Working with Minsky
	Components in Minsky
	Inserting a model component
	Creating an equation
	Wiring components together
	Creating a banking model

	Tutorial
	Basic System Dynamics model
	Basic Banking model
	Loanable Funds

	Reference
	Operations
	add +
	subtract -
	multiply
	divide
	log
	pow xy
	lt <
	le
	eq =
	min
	max
	and
	or
	not
	time t
	differentiate d/dt
	User defined function
	copy
	integrate dt
	sqrt "1270
	exp
	ln
	sin
	cos
	tan
	asin
	acos
	atan
	sinh
	cosh
	tanh
	abs |x|
	floor x
	frac

	Tensor operations
	sum
	product
	infimum
	supremum
	any
	all
	infindex
	supindex
	running sum +
	running product +
	difference
	index
	gather
	inner product
	outer product

	Switch
	Variables
	Variable names
	Initial conditions
	Tensor valued initial conditions
	Sliders
	Importing a parameter from a CSV file
	Duplicate keys

	Wires
	Tensor values
	Groups
	Plot widget
	Sheet Widget
	Note Widget
	Godley Tables
	Context Menu
	Canvas background
	Dimensional Analysis
	Bookmarks

	User defined functions
	Introduction
	Capabilities
	Example expressions
	Copyright notice
	Built-in operations & functions
	Arithmetic & Assignment Operators
	Equalities & Inequalities
	Boolean Operations
	General Purpose Functions
	Trigonometry Functions
	String Processing
	Control Structures

	Fundamental types

